Search results for: out of plane vibration
271 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media
Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding
Abstract:
A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.Keywords: discrete elements, Hertzian contact, polydispersity, weakly nonlinear, wave propagation
Procedia PDF Downloads 204270 Radio Labeling and Characterization of Cysteine and Its Derivatives with Tc99m and Their Bio-Distribution
Authors: Rabia Ashfaq, Saeed Iqbal, Atiq ur Rehman, Irfanullah Khan
Abstract:
An extensive series of radiopharmaceuticals have been explored in order to discover a better brain tumour diagnostic agent. Tc99m labelling with cysteine and its derivatives in liposomes shows effective tagging of about 70% to 80 %. Due to microscopic size it successfully crossed the brain barrier in 2 minutes which gradually decreases in 5 to 15 minutes. HMPAO labelled with Tc99m is another important radiopharmaceutical used to study brain perfusion but it comes with a flaw that it’s only functional during epilepsy. 1, 1 ECD is purely used in Tc99m ECD formulation; because it not only tends to cross the blood brain barrier but it can be metabolized which can be easily entrapped in human brain. Radio labelling of Cysteine with Tc99m at room temperature was performed which yielded no good results. Hence cysteine derivatives with salicylaldehyde were prepared that produced about 75 % yield for ligand. In order to perform it’s radio labelling a suitable solvent DMSO was selected and physical parameters were performed. Elemental analyser produced remarkably similar results for ligand as reported in literature. IR spectra of Ligand in DMSO concluded in the absence of SH stretch and presence of N-H vibration. Thermal analysis of the ligand further suggested its decomposition pattern with no distinct curve for a melting point. Radio labelling of ligand was performed which produced excellent results giving up to 88% labelling at pH 5.0. Clinical trials using Rabbit were performed after validating the products reproducibility. The radiopharmaceutical prepared was injected into the rabbit. Dynamic as well as static study was performed under the SPECT. It showed considerable uptake in the kidneys and liver considering it suitable for the Hypatobilliary study.Keywords: marcapto compounds, 99mTc - radiolabeling, salicylaldicysteine, thiozolidine
Procedia PDF Downloads 344269 Pistachio Supplementation Ameliorates the Motor and Cognitive Deficits in Rotenone-Induced Rat Model of Parkinson’s Disease
Authors: Saida Haider, Syeda Madiha
Abstract:
Parkinson’s disease (PD) is a common neurological disorder characterized by motor deficits and loss of dopaminergic neurons. Oxidative stress is said to play a pivotal role in the pathophysiology of the disease. In the present study, PD was induced by injection of rotenone (1.5 mg/kg/day, s.c.) for eight days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks. At the end of treatment brains were dissected out and striatum was isolated for biochemical and neurochemical analysis. Morris water maze (MWM) test and novel object recognition (NOR) task was used to test the memory function while motor behavior was determined by open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test. Several dietary components have been evaluated as potential therapeutic compounds in many neurodegenerative diseases. Increasing evidence shows that nuts have protective effects against various diseases by improving the oxidative status and reducing lipid peroxidation. Pistachio is the only nut that contains anthocyanin, a potent antioxidant having neuroprotective properties. Results showed that pistachio supplementation significantly restored the rotenone-induced motor deficits and improved the memory performance. Moreover, rats treated with pistachio also exhibited enhanced oxidative status and increased dopamine (DA) and 5-hydroxytryptamine (5-HT) concentration in striatum. In conclusion, to our best knowledge, we have for the first time shown that pistachio nut possesses neuroprotective effects against rotenone-induced motor and cognitive deficits. These beneficial effects of pistachio may be attributed to its high content of natural antioxidant and phenolic compounds. Hence, consumption of pistachio regularly as part of a daily diet can be beneficial in the prevention and treatment of PD.Keywords: rotenone, pistachio, oxidative stress, Parkinson’s disease
Procedia PDF Downloads 108268 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers
Abstract:
Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.Keywords: transmission loss, absorptive material, flow resistivity, thickness, frequency
Procedia PDF Downloads 250267 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.Keywords: masonry infill, framed structures, RC buildings, non-structural elements
Procedia PDF Downloads 277266 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge
Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti
Abstract:
Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis
Procedia PDF Downloads 184265 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics
Authors: Yao Jie, Yeo Khoon Seng
Abstract:
In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.Keywords: aerodynamics, flight control, computational fluid dynamics (CFD), flapping-wing flight
Procedia PDF Downloads 348264 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 188263 Strain-Driven Bidirectional Spin Orientation Control in Epitaxial High Entropy Oxide Films
Authors: Zhibo Zhao, Horst Hahn, Robert Kruk, Abhisheck Sarkar
Abstract:
High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄-HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides.Keywords: high entropy oxides, thin film, strain tuning, perpendicular magnetic anistropy
Procedia PDF Downloads 48262 Record Peak Current Density in AlN/GaN Double-Barrier Resonant Tunneling Diodes on Free-Standing Gan Substrates by Modulating Barrier Thickness
Authors: Fang Liu, Jia Jia Yao, Guan Lin Wu, Ren Jie Liu, Zhuang Guo
Abstract:
Leveraging plasma-assisted molecular beam epitaxy (PA-MBE) on c-plane free-standing GaN substrates, this work demonstrates high-performance AlN/GaN double-barrier resonant tunneling diodes (RTDs) featuring stable and repeatable negative differential resistance (NDR) characteristics at room temperature. By scaling down the barrier thickness of AlN and the lateral mesa size of collector, a record peak current density of 1551 kA/cm2 is achieved, accompanied by a peak-to-valley current ratio (PVCR) of 1.24. This can be attributed to the reduced resonant tunneling time under thinner AlN barrier and the suppressed external incoherent valley current by reducing the dislocation number contained in the RTD device with the smaller size of collector. Statistical analysis of the NDR performance of RTD devices with different AlN barrier thicknesses reveals that, as the AlN barrier thickness decreases from 1.5 nm to 1.25 nm, the average peak current density increases from 145.7 kA/cm2 to 1215.1 kA/cm2, while the average PVCR decreases from 1.45 to 1.1, and the peak voltage drops from 6.89 V to 5.49 V. The peak current density obtained in this work represents the highest value reported for nitride-based RTDs to date, while maintaining a high PVCR value simultaneously. This illustrates that an ultra-scaled RTD based on a vertical quantum-well structure and lateral collector size is a valuable approach for the development of nitride-based RTDs with excellent NDR characteristics, revealing their great potential applications in high-frequency oscillation sources and high-speed switch circuits.Keywords: GaN resonant tunneling diode, peak current density, peak-to-valley current ratio, negative differential resistance
Procedia PDF Downloads 63261 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia
Authors: David Robert Irvine
Abstract:
In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear
Procedia PDF Downloads 160260 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device
Procedia PDF Downloads 305259 A New Formulation Of The M And M-theta Integrals Generalized For Virtual Crack Closure In A Three-dimensional Medium
Authors: Loïc Chrislin Nguedjio, S. Jerome Afoutou, Rostand Moutou Pitti, Benoit Blaysat, Frédéric Dubois, Naman Recho, Pierre Kisito Talla
Abstract:
The safety and durability of structures remain challenging fields that continue to draw the attention of designers. One widely adopted approach is fracture mechanics, which provides methods to evaluate crack stability in complex geometries and under diverse loading conditions. The global energy approach is particularly comprehensive, as it calculates the energy release rate required for crack initiation and propagation using path-independent integrals. This study aims to extend these invariant integrals to include path-independent integrals, with the goal of enhancing the accuracy of failure predictions. The ultimate objective is to create more robust materials while optimizing structural safety and durability. By integrating the real and virtual field method with the virtual crack closure technique, a new formulation of the M-integral is introduced. This formulation establishes a direct relationship between local stresses on the crack faces and the opening displacements, allowing for an accurate calculation of fracture energy. The analytical calculations are grounded in the assumption that the energy needed to close a crack virtually is equal to the energy released during its opening. This novel integral is implemented in a finite element code using Cast3M to simulate cracking criteria within a wood material context. Initially, the numerical calculations are focused on plane strain conditions, but they are later extended to three-dimensional environments, taking into account the orthotropic nature of wood.Keywords: energy release rate, path-independent integrals, virtual crack closure, orthotropic material
Procedia PDF Downloads 9258 Right Ventricular Dynamics During Breast Cancer Chemotherapy in Low Cardiovascular Risk Patients
Authors: Nana Gorgiladze, Tamar Gaprindashvili, Mikheil Shavdia, Zurab Pagava
Abstract:
Introduction/Purpose Chemotherapy is a common treatment for breast cancer, but it can also cause damage to the heart and blood vessels. This damage, known as cancer therapy-related cardiovascular toxicity (CTR-CVT), can increase the risk of heart failure and death in breast cancer patients. The left ventricle is often affected by CTR-CVT, but the right ventricle (RV) may also be vulnerable to CTR-CVT and may show signs of dysfunction before the left ventricle. The study aims to investigate how the RV function changes during chemotherapy for breast cancer by using conventional echocardiographic and global longitudinal strain (GLS) techniques. By measuring the GLS strain of the RV, researchers tend to detect early signs of CTR-CVT and improve the management of breast cancer patients. Methods The study was conducted on 28 women with low cardiovascular risk who received anthracycline chemotherapy for breast cancer. Conventional 2D echocardiography (LVEF, RVS’, TAPSE) and speckle-tracking echocardiography (STE) measurements of the left and right ventricles (LVGLS, RVGLS) were used to assess cardiac function before and after chemotherapy. All patients had normal LVEF at the beginning of the study. Cardiotoxicity was defined as a new LVEF reduction of 10 percentage points to an LVEF of 40-49% and/or a new decline in GLS of 15% from baseline, as proposed by the most recent cardio-oncology guideline. ResultsThe research found that the LVGLS decreased from -21.2%2.1% to -18.6%2.6% (t-test = -4.116; df = 54, p=0.001). The change in value LV-GLS was 2.6%3.0%. The mean percentage change of the LVGLS was 11,6%13,3%; p=0.001. Similarly, the right ventricular global longitudinal strain (RVGLS) decreased from -25.2%2.9% to -21.4%4.4% (t-test = -3.82; df = 54, p=0.001). The RV-GLS value of change was 3.8%3.6%. Likewise, the percentage decrease of the RVGLS was 15,0%14,3%, p=0.001.However, the measurements of the right ventricular systolic function (RVS) and tricuspid annular plane systolic excursion (TAPSE) were insignificant, and the left ventricular ejection fraction ( LVEF) remained unchanged.Keywords: cardiotoxicity, chemotherapy, GLS, right ventricle
Procedia PDF Downloads 72257 The Associations of Pes Planus Plantaris (Flat Foot) to the Postural Stability of Basketball Student-Athletes Through the Ground Reaction Force Vector (vGRF)
Authors: Def Primal, Sasanty Kusumaningtyas, Ermita I. Ibrahim
Abstract:
Purpose: The main objective of this study is to determine the pes planus plantaris (flat foot) condition can contribute to the disturbance of postural stability in basketball athletes in static and dynamic activities. Methods: This cross-sectional quantitative analytical retrospective study on 47 subjects of basketball student-athletes identified the foot arch index by extensive footprint area and AMTI (Advanced Mechanical Technology Inc.) Force flat-form (force plate) determined their postural stability. Subjects were conducted in three activities (static, dynamic vertical jump, and dynamic loading response) for ground reaction force (GRF) resultant vectors towards the vertical plane of body mass (W). Results Analytical results obtained that 80.9% of subjects had pes planus plantaris. It shows no significant differences in pes planus plantaris incidence in both sexes subject (p>0.005); however, there are differences in athlete’s exercise period aspect. Athlete students who have practiced strictly for more than four years’ experience over 50% of pes planus plantaris; furthermore, a long period of exercise was believed to stimulate pes planus. The average value of GRF vectors of pes planus plantaris subjects on three different basketball movements shows a significant correlation to postural stability. Conclusions Pes planus plantaris affected almost basketball athletes regarding the length and intensity of exercise performed. The condition significantly contributes to postural stability disturbance on a static condition, dynamic vertical jump, and dynamic vertical jump loading response.Keywords: pes planus plantaris, flatfoot, ground reaction force, static and dynamic stability
Procedia PDF Downloads 144256 Seismic Behavior of Self-Balancing Post-Tensioned Reinforced Concrete Spatial Structure
Authors: Mircea Pastrav, Horia Constantinescu
Abstract:
The construction industry is currently trying to develop sustainable reinforced concrete structures. In trying to aid in the effort, the research presented in this paper aims to prove the efficiency of modified special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members. This aim is due to the fact that current design standards do not cover the spatial design of moment frame structures assembled by post-tensioning with special hybrid joints. This lack of standardization is coupled with the fact that previous experimental programs, available in scientific literature, deal mainly with plane structures and offer little information regarding spatial behavior. A spatial model of a modified hybrid moment frame is experimentally analyzed. The experimental results of a natural scale model test of a corner column-beams sub-structure, cut from an actual multilevel building tested to seismic type loading are presented in order to highlight the behavior of this type of structure. The test is performed under alternative cycles of imposed lateral displacements, up to a storey drift ratio of 0.035. Seismic response of the spatial model is discussed considering the acceptance criteria for reinforced concrete frame structures designed based on experimental tests, as well as some of its major sustainability features. The results obtained show an overall excellent behavior of the system. The joint detailing allows for quick and cheap repairs after an accidental event and a self-balancing behavior of the system that ensures it can be used almost immediately after an accidental event it.Keywords: modified hybrid joint, seismic type loading response, self-balancing structure, acceptance criteria
Procedia PDF Downloads 240255 Comparative Study Between Two Different Techniques for Postoperative Analgesia in Cesarean Section Delivery
Authors: Nermeen Elbeltagy, Sara Hassan, Tamer Hosny, Mostafa Abdelaziz
Abstract:
Introduction: Adequate postoperative analgesia after caesarean section (CS) is crucial as it impacts the distinct surgical recovery needs of the parturient. Over recent years, there has been increased interest in regional nerve block techniques with promising results on efficacy. These techniques reduce the need for additional analgesia, thereby lowering the incidence of drug-related side effects. As postoperative pain after cesarean is mainly due to abdominal incision, the transverses abdomenis plane ( TAP ) block is a relatively new abdominal nerve block with excellent efficacy after different abdominal surgeries, including cesarean section. Objective: The main objective is to compare ultrasound-guided TAP block provided by the anesthesiologist with TAP provided by the surgeon through a caesarean incision regarding the duration of postoperative analgesia, intensity of analgesia, timing of mobilization, and easiness of the procedure. Method: Ninety pregnant females at term who were scheduled for delivery by elective cesarean section were randomly distributed into two groups. The first group (45) received spinal anesthesia and postoperative ultrasound guided TAP block using 20ml on each side of 0.25% bupivacaine which was provided by the anesthesiologist. The second group (45) received spinal anesthesia plus a TAP block using 20ml on each side of 0.25% bupivacaine, which was provided by the surgeon through the cesarean incision. Visual Analogue Scale (VAS) was used for the comparison between the two groups. Results: VAS score after four hours was higher among the TAP block group provided by the surgeon through the surgical incision than the postoperative analgesic profile using ultrasound-guided TAP block provided by the anesthesiologist (P=0.011). On the contrary, there was no statistical difference in the patient’s dose of analgesia after four hours of the TAP block (P=0.228). Conclusion: TAP block provided through the surgical incision is safe and enhances early patient’s mobilization.Keywords: TAP block, CS, VAS, analgesia
Procedia PDF Downloads 49254 Human Vibrotactile Discrimination Thresholds for Simultaneous and Sequential Stimuli
Authors: Joanna Maj
Abstract:
Body machine interfaces (BMIs) afford users a non-invasive way coordinate movement. Vibrotactile stimulation has been incorporated into BMIs to allow feedback in real-time and guide movement control to benefit patients with cognitive deficits, such as stroke survivors. To advance research in this area, we examined vibrational discrimination thresholds at four body locations to determine suitable application sites for future multi-channel BMIs using vibration cues to guide movement planning and control. Twelve healthy adults had a pair of small vibrators (tactors) affixed to the skin at each location: forearm, shoulders, torso, and knee. A "standard" stimulus (186 Hz; 750 ms) and "probe" stimuli (11 levels ranging from 100 Hz to 235 Hz; 750 ms) were delivered. Probe and test stimulus pairs could occur sequentially or simultaneously (timing). Participants verbally indicated which stimulus felt more intense. Stimulus order was counterbalanced across tactors and body locations. Probabilities that probe stimuli felt more intense than the standard stimulus were computed and fit with a cumulative Gaussian function; the discrimination threshold was defined as one standard deviation of the underlying distribution. Threshold magnitudes depended on stimulus timing and location. Discrimination thresholds were better for stimuli applied sequentially vs. simultaneously at the torso as well as the knee. Thresholds were small (better) and relatively insensitive to timing differences for vibrations applied at the shoulder. BMI applications requiring multiple channels of simultaneous vibrotactile stimulation should therefore consider the shoulder as a deployment site for a vibrotactile BMI interface.Keywords: electromyography, electromyogram, neuromuscular disorders, biomedical instrumentation, controls engineering
Procedia PDF Downloads 64253 The Effects of Impact Forces and Kinematics of Two Different Stance Position at Straight Punch Techniques in Boxing
Authors: Bergun Meric Bingul, Cigdem Bulgan, Ozlem Tore, Mensure Aydin, Erdal Bal
Abstract:
The aim of the study was to compare the effects of impact forces and some kinematic parameters with two different straight punch stance positions in boxing. 9 elite boxing athletes from the Turkish National Team (mean age± SD 19.33±2.11 years, mean height 174.22±3.79 cm, mean weight 66.0±6.62 kg) participated in this study as voluntarily. Boxing athletes performed one trial in straight punch technique for each two different stance positions (orthodox and southpaw stances) at sandbag. The trials were recorded at a frequency of 120Hz using eight synchronized high-speed cameras (Oqus 7+), which were placed, approximately at right- angles to one another. The three-dimensional motion analysis was performed with a Motion Capture System (Qualisys, Sweden). Data was transferred to Windows-based data acquisition software, which was QTM (Qualisys Track Manager). 11 segment models were used for determination of the kinematic variables (Calf, leg, punch, upperarm, lowerarm, trunk). Also, the sandbag was markered for calculation of the impact forces. Wand calibration method (with T stick) was used for field calibration. The mean velocity and acceleration of the punch; mean acceleration of the sandbag and angles of the trunk, shoulder, hip and knee were calculated. Stance differences’ data were compared with Wilcoxon test for using SPSS 20.0 program. According to the results, there were statistically significant differences found in trunk angle on the sagittal plane (yz) (p<0.05). There was a significant difference also found in sandbag acceleration and impact forces between stance positions (p < 0.05). Boxing athletes achieved more impact forces and accelerations in orthodox stance position. It is recommended that to use an orthodox stance instead of southpaw stance in straight punch technique especially for creating more impact forces.Keywords: boxing, impact force, kinematics, straight punch, orthodox, southpaw
Procedia PDF Downloads 326252 Bifurcations of a System of Rotor-Ball Bearings with Waviness and Squeeze Film Dampers
Authors: Sina Modares Ahmadi, Mohamad Reza Ghazavi, Mandana Sheikhzad
Abstract:
Squeeze film damper systems (SFD) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. These types of systems are frequently used in aircraft gas turbine engines. There are some structural parameters which are of great importance in designing these kinds of systems, such as oil film thickness, C, and outer race mass, mo. Moreover, there is a crucial parameter associated with manufacturing process, under the title of waviness. Geometric imperfections are often called waviness if its wavelength is much longer than Hertzian contact width which is a considerable source of vibration in ball bearings. In this paper, a system of a flexible rotor and two ball bearings with floating ring squeeze film dampers and consideration of waviness has been modeled and solved by a numerical integration method, namely Runge-Kutta method to investigate the dynamic response of the system. The results show that by increasing the number of wave lobes, which is due to inappropriate manufacturing, non- periodic and chaotic behavior increases. This result reveals the importance of manufacturing accuracy. Moreover, as long as C< 1.5×10-4 m, by increasing the oil film thickness, unwanted vibrations and non-periodic behavior of the system have been reduced, On the other hand, when C>1.5×10-4 m, increasing the outer oil film thickness results in the increasing chaotic and non-periodic responses. This result shows that although the presence of oil film results in reduction the non-periodic and chaotic behaviors, but the oil film has an optimal thickness. In addition, with increasing mo, the disc displacement amplitude increases. This result reveals the importance of utilizing light materials in manufacturing the squeeze film dampers.Keywords: squeeze-film damper, waviness, ball bearing, bifurcation
Procedia PDF Downloads 383251 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid
Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis
Abstract:
This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener
Procedia PDF Downloads 78250 A Technique for Planning the Application of Buttress Plate in the Medial Tibial Plateau Using the Preoperative CT Scan
Authors: P. Panwalkar, K. Veravalli, R. Gwynn, M. Tofighi, R. Clement, A. Mofidi
Abstract:
When operating on tibial plateau fracture especially medial tibial plateau, it has regularly been said “where do I put my thumb to reduce the fracture”. This refers to the ideal placement of the buttress device to hold the fracture till union. The aim of this study was to see if one can identify this sweet spot using a CT scan. Methods: Forty-five tibial plateau fractures with medial plateau involvement were identified and included in the study. The preoperative CT scans were analysed and the medial plateau involvement pattern was classified based on modified radiological classification by Yukata et-al of stress fracture of medial tibial plateau. The involvement of part of plateau was compared with position of buttress plate position which was classified as medial posteromedial or both. Presence and position of the buttress was compared with ability to achieve and hold the reduction of the fracture till union. Results: Thirteen fractures were type-1 fracture, 19 fractures were type-2 fracture and 13 fractures were type-3 fracture. Sixteen fractures were buttressed correctly according to the potential deformity and twenty-six fractures were not buttressed and three fractures were partly buttressed correctly. No fracture was over butressed! When the fracture was buttressed correctly the rate of the malunion was 0%. When fracture was partly buttressed 33% were anatomically united and 66% were united in the plane of buttress. When buttress was not used, 14 were malunited, one malunited in one of the two planes of deformity and eleven anatomically healed (of which 9 were non displaced!). Buttressing resulted in statistically significant lower mal-union rate (x2=7.8, p=0.0052). Conclusion: The classification based on involvement of medial condyle can identify the placement of buttress plate in the tibial plateau. The correct placement of the buttress plate results in predictably satisfactory union. There may be a correlation between injury shape of the tibial plateau and the fracture type.Keywords: knee, tibial plateau, trauma, CT scan, surgery
Procedia PDF Downloads 146249 Upside Down Words as Initial Clinical Presentation of an Underlying Acute Ischemic Stroke
Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing
Abstract:
Background: Reversal of vision metamorphopsia is a transient form of metamorphopsia described as an upside-down alteration of the visual field in the coronal plane. Patients would describe objects, such as cups, upside down, but the tea would not spill, and people would walk on their heads. It is extremely rare as a stable finding, lasting days or weeks. We report a case wherein this type of metamorphopsia occurred only in written words and lasted for six months. Objective: To the best of our knowledge, we report the first rare occurrence of reversal of vision metamorphopsia described as inverted words as the sole initial presentation of an underlying stroke. Case Presentation: We report a 59-year-old male with poorly controlled hypertension and diabetes mellitus who presented with a 3-day history of difficulty reading, described as the words were turned upside down as if the words were inverted horizontally then with the progression of deficits such as right homonymous hemianopia and achromatopsia, prosopagnosia. Cranial magnetic resonance imaging (MRI) revealed an acute infarct on the left posterior cerebral artery territory. Follow-up after six months revealed improvement of the visual field cut but with the persistence of the higher cortical function deficits. Conclusion: We report the first rare occurrence of metamorphopsia described as purely inverted words as the sole initial presentation of an underlying stroke. The differential diagnoses of a patient presenting with text reversal metamorphopsia should include stroke in the occipitotemporal areas. It further expands the landscape of metamorphopsias due to its exclusivity to written words and prolonged duration. Knowing these clinical features will help identify the lesion locus and improve subsequent stroke care, especially in time-bound management like intravenous thrombolysis.Keywords: rare presentation, text reversal metamorphopsia, ischemic stroke, stroke
Procedia PDF Downloads 60248 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 97247 Application of the Shallow Seismic Refraction Technique to Characterize the Foundation Rocks at the Proposed Tushka New City Site, South Egypt
Authors: Abdelnasser Mohamed, R. Fat-Helbary, H. El Khashab, K. EL Faragawy
Abstract:
Tushka New City is one of the proposed new cities in South Egypt. It is located in the eastern part of the western Desert of Egypt between latitude 22.878º and 22.909º N and longitude 31.525º and 31.635º E, about 60 kilometers far from Abu Simble City. The main target of the present study is the investigation of the shallow subsurface structure conditions and the dynamic characteristics of subsurface rocks using the shallow seismic refraction technique. Forty seismic profiles were conducted to calculate the P- and S-waves velocity at the study area. P- and SH-waves velocities can be used to obtain the geotechnical parameters and also SH-wave can be used to study the vibration characteristics of the near surface layers, which are important for earthquakes resistant structure design. The output results of the current study indicated that the P-waves velocity ranged from 450 to 1800 m/sec and from 1550 to 3000 m/sec for the surface and bedrock layer respectively. The SH-waves velocity ranged from 300 to 1100 m/sec and from 1000 to 1800 m/sec for the surface and bedrock layer respectively. The thickness of the surface layer and the depth to the bedrock layer were determined along each profile. The bulk density ρ of soil layers that used in this study was calculated for all layers at each profile in the study area. In conclusion, the area is mainly composed of compacted sandstone with high wave velocities, which is considered as a good foundation rock. The south western part of the study area has minimum values of the computed P- and SH-waves velocities, minimum values of the bulk density and the maximum value of the mean thickness of the surface layer.Keywords: seismic refraction, Tushak new city, P-waves, SH-waves
Procedia PDF Downloads 381246 Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules
Authors: Rajat Jain, Himanshu Pandey, Somesh Mehta, Pravin P. Patil
Abstract:
Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength.Keywords: FEM, modal analysis, formula SAE cars, chassis frame, Ansys
Procedia PDF Downloads 348245 Adsorption of Atmospheric Gases Using Atomic Clusters
Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko
Abstract:
First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.Keywords: catalyst, gaussian, nanoparticles, oxidation
Procedia PDF Downloads 96244 Designing and Formulating Action Plan for Development of Corporate Citizenship in Producing Units in Iran
Authors: Freyedon Ahmadi
Abstract:
Corporate citizenship is considered as one of the most discussed topics in the developed countries, in which a citizen considers a Corporate just like a usual citizen with every civil right as respectful for corporate as for actual citizens, and in return citizens expect that corporate would pay a reciprocal respect to them. The current study’s purpose is to identify the impact of the current state of corporate citizenship along effective factors on its condition on industrial producing units, in order to find an accession plane for corporate citizenship development. In this study corporate citizenship is studied in four dimensions like legal corporate, economical corporate, ethical corporate and voluntary corporate. Moreover, effective factors’ impact on corporate citizenship is explored based on threefold dimensional model: behavioral, structural, and content factors, as well. In this study, 50 corporate of Food industry and of petrochemical industry, along with 200 selected individuals from directors’ board on Tehran province’s scale with stratified random sampling method, are chosen as actuarial sample. If based on functional goal and compilation methods, the present study is a description of correlation type; questionnaire is used for accumulation of initial Data. For Instrument Validity expert’s opinion is used and structural equations and its reliability is qualified by using Cronbach Alpha. The results of this study indicate that close to 70 percent of under survey corporate have not a good condition in corporate citizenship. And all of structural factors, behavioral factors, contextual factors, have a great deal of impression and impact on the advent corporate citizenship behavior in the producing Units. Among the behavioral factors, social responsibility; among structural factors, organic structure and human centered orientation, medium size, high organizational capacity; and among the contextual factors, the clientele’s positive viewpoints toward corporate had the utmost importance in impression on under survey Producing units.Keywords: corporate citizenship, structural factors, behavioral factors, contextual factors, producing units
Procedia PDF Downloads 231243 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet
Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin
Abstract:
Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets
Procedia PDF Downloads 391242 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method
Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong
Abstract:
Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model
Procedia PDF Downloads 373