Search results for: neural progentor cells
3696 The Activity of Polish Propolis and Cannabidiol Oil Extracts on Glioblastoma Cell Lines
Authors: Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Justyna Moskwa, Krystyna Gromkowska-Kepka, Konrad Mielcarek, Patryk Nowakowski, Katarzyna Socha, Anna Puscion-Jakubik, Maria H. Borawska
Abstract:
Glioblastoma (grade IV WHO) is a rapidly progressive brain tumor with very high morbidity and mortality. The vast malignant gliomas are not curable despite the therapy (surgical, radiotherapy, chemotherapy) and patients seek alternative or complementary treatments. Patients often use cannabidiol (CBD) oil as an alternative therapy of glioblastoma. CBD is one of the cannabinoids, an active component of Cannabis sativa. THC (Δ9-tetrahydrocannabinol) can be addictive, and in many countries CBD oil without THC ( < 0,2%) is available. Propolis produced by bees from the resin collected from trees has antiglioma properties in vitro and can be used as a supplement in complementary therapy of gliomas. The aim of this study was to examine the influence of extract from CBD oil in combination with propolis extract on two glioblastoma cell lines. The MTT (Thiazolyl Blue Tetrazolium Bromide) test was used to determine the influence of CBD oil extract and polish propolis extract (PPE) on the viability of glioblastoma cell lines – U87MG and LN18. The cells were incubated (24, 48 and 72 h) with CBD oil extract and PPE. CBD extract was used in concentration 1, 1.5 and 3 µM and PPE in 30 µg/mL. The data were presented compared to the control. The statistical analysis was performed using Statistica v. 13.0 software. CBD oil extract in concentrations 1, 1.5 and 3 µM did not inhibit the viability of U87MG and LN18 cells (viability more than 90% cells compared to the control). There was no dose-response viability, and IC50 value was not recognized. PPE in the concentration of 30 µg/mL time-dependently inhibited the viability of U87MG and LN18 cell line (after 48 h the viability as a percent of the control was 59,7±6% and 57,8±7%, respectively). In a combination of CBD with PPE, the viability of the treated cells was similar to PPE used alone (58,2±7% and 56,5±9%, respectively). CBD oil extract did not show anti-glioma activity and in combination with PPE did not change the activity of PPE.Keywords: anticancer, cannabidiol, cell line, glioblastoma
Procedia PDF Downloads 2463695 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass
Authors: Morteza Elsa, Amirhossein Moghanian
Abstract:
The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.Keywords: antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes
Procedia PDF Downloads 1473694 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1143693 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins
Authors: Caroline Mendes, Mary McNamara, Orla Howe
Abstract:
For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers
Procedia PDF Downloads 3013692 Targeting the EphA2 Receptor Tyrosine Kinases in Melanoma Cancer, both in Humans and Dogs
Authors: Shabnam Abdi, Behzad Toosi
Abstract:
Background: Melanoma is the most lethal type of malignant skin cancer in humans and dogs since it spreads rapidly throughout the body. Despite significant advances in treatment, cancer at an advanced stage has a poor prognosis. Hence, more effective treatments are needed to enhance outcomes with fewer side effects. Erythropoietin-producing hepatocellular receptors are the largest family of receptor tyrosine kinases and are divided into two subfamilies, EphA and EphB, both of which play a significant role in disease, especially cancer. Due to their association with proliferation and invasion in many aggressive types of cancer, Eph receptor tyrosine kinases (Eph RTKs) are promising cancer therapy molecules. Because these receptors have not been studied in canine melanoma, we investigated how EphA2 influences survival and tumorigenicity of melanoma cells. Methods: Expression of EphA2 protein in canine melanoma cell lines and human melanoma cell line was evaluated by Western blot. Melanoma cells were transduced with lentiviral particles encoding Eph-targeting shRNAs or non-silencing shRNAs (control) for silencing the expression of EphA2 receptor, and silencing was confirmed by Western blotting and immunofluorescence. The effect of siRNA treatment on cellular proliferation, colony formation, tumorsphere assay, invasion was analyzed by Resazurin assay Matrigel invasion assay, respectively. Results: Expression of EphA2 was detected in canine and human melanoma cell lines. Moreover, stably silencing EphA2 by specific shRNAs significantly and consistently decreased the expression of EphA2 protein in both human and canine melanoma cells. Proliferation, colony formation, tumorsphere and invasion of melanoma cells were significantly decreased in EphA2 siRNA-treated cells compared to control. Conclusion: Our data provide the first functional evidence that the EphA2 receptor plays a critical role in the malignant cellular behavior of melanoma in both human and dogs.Keywords: ephA2, targeting, melanoma, human, canine
Procedia PDF Downloads 603691 The Influence of Noise on Aerial Image Semantic Segmentation
Authors: Pengchao Wei, Xiangzhong Fang
Abstract:
Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise
Procedia PDF Downloads 2203690 Fuel Cells and Offshore Wind Turbines Technology for Eco-Friendly Ports with a Case Study
Authors: Ibrahim Sadek Sedik Ibrahim, Mohamed M. Elgohary
Abstract:
Sea ports are considered one of the factors affecting the progress of economic globalization and the international trade; consequently, they are considered one of the sources involved in the deterioration of the maritime environment due to the excessive amount of exhaust gases emitted from their activities. The majority of sea ports depend on the national electric grid as a source of power for the domestic and ships’ electric demands. This paper discusses the possibility of shifting ports from relying on the national grid electricity to green power-based ports. Offshore wind turbines and hydrogenic PEM fuel cell units appear as two typical promising clean energy sources for ports. As a case study, the paper investigates the prospect of converting Alexandria Port in Egypt to be an eco-friendly port with the study of technical, logistic, and financial requirements. The results show that the fuel cell, followed by a combined system of wind turbines and fuel cells, is the best choice regarding electricity production unit cost by 0.101 and 0.107 $/kWh, respectively. Furthermore, using of fuel cells and offshore wind turbine as green power concept will achieving emissions reduction quantity of CO₂, NOx, and CO emissions by 80,441, 20.814, and 133.025 ton per year, respectively. Finally, the paper highlights the role that renewable energy can play when supplying Alexandria Port with green energy to lift the burden on the government in supporting the electricity, with a possibility of achieving a profit of 3.85% to 22.31% of the annual electricity cost compared with the international prices.Keywords: fuel cells, green ports, IMO, national electric grid, offshore wind turbines, port emissions, renewable energy
Procedia PDF Downloads 1413689 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 753688 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 1413687 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells
Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy
Abstract:
Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells
Procedia PDF Downloads 2803686 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4423685 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer
Authors: Elvin P. Chizenga, Heidi Abrahamse
Abstract:
Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy
Procedia PDF Downloads 1253684 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 2843683 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4903682 Endothelin Cells and Its Molecular Biology and Microbiology
Authors: Chro Kawyan
Abstract:
Endothelin-1 (ET-1), the principal individual from the newfound mammalian endothelin group of organically dynamic peptides, was initially distinguished as a 21 buildup powerful vasoconstrictor peptide in vascular endothelial cells. However, it has since been demonstrated to have a wide range of pharmacological activities in tissues both inside and outside the cardiovascular system. Additionally, peptides that have a striking resemblance to ET-1 have been identified as the primary toxic component of snake venom. In addition, late examinations have proposed that warm blooded creatures, including people, produce three unmistakable individuals from this peptide family, ET-1, ET-2 and ET-J, which might have various profiles of organic action and may follow up on particular subtypes of endothelin receptor. Masashi Yanagisawa and Tomoh Masaki survey the ongoing status of the organic chemistry and sub-atomic science of endothelin.Keywords: thelin, microbiology, molecular biology, cell
Procedia PDF Downloads 723681 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4133680 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide
Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi
Abstract:
This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1
Procedia PDF Downloads 4083679 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor
Authors: Chiraz Ben Jabeur, Hassene Seddik
Abstract:
In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance
Procedia PDF Downloads 1363678 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 1683677 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load
Procedia PDF Downloads 3523676 Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants
Authors: Feng Ju Chuang, Yu Wen Wang, Tai Jung Hsieh, Shyh Ming Kuo
Abstract:
Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated.Keywords: collagen synthesis, macrophage, NIH3T3 cells, polylactic acid particles
Procedia PDF Downloads 1133675 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 1213674 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system
Procedia PDF Downloads 2993673 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer
Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam
Abstract:
Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations
Procedia PDF Downloads 1313672 Isolation and Culture of Keratinocytes and Fibroblasts to Develop Artificial Skin Equivalent in Cats
Authors: Lavrentiadou S. N., Angelou V., Chatzimisios K., Papazoglou L.
Abstract:
The aim of this study was the isolation and culture of keratinocytes and fibroblasts from feline skin to ultimately create an artificial engineered skin (including dermis and epidermis) useful for the effective treatment of large cutaneous deficits in cats. Epidermal keratinocytes and dermal fibroblasts were freshly isolated from skin biopsies using an 8 mm biopsy punch obtained from 8 healthy cats that had undergone ovariohysterectomy. The owner’s consent was obtained. All cats had a complete blood count and a serum biochemical analysis and were screened for feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) preoperatively. The samples were cut into small pieces and incubated with collagenase (2 mg/ml) for 5-6 hours. Following digestion, cutaneous cells were filtered through a 100 μm cell strainer, washed with DMEM, and grown in DMEM supplemented with 10% FBS. The undigested epidermis was washed with DMEM and incubated with 0.05% Trypsin/0.02% EDTA (TE) solution. Keratinocytes recovered in the TE solution were filtered through a 100 μm and a 40 μm cell strainer and, following washing, were grown on a collagen type I matrix in DMEM: F12 (3:1) medium supplemented with 10% FΒS, 1 μm hydrocortisone, 1 μm isoproterenol and 0.1 μm insulin. Both fibroblasts and keratinocytes were grown in a humidified atmosphere with 5% CO2 at 37oC. The medium was changed twice a week and cells were cultured up to passage 4. Cells were grown to 70-85% confluency, at which point they were trypsinized and subcultured in a 1:4 dilution. The majority of the cells in each passage were transferred to a freezing medium and stored at -80oC. Fibroblasts were frozen in DMEM supplemented with 30% FBS and 10% DMSO, whereas keratinocytes were frozen in a complete keratinocyte growth medium supplemented with 10% DMSO. Both cell types were thawed and successfully grown as described above. Therefore, we can create a bank of fibroblasts and keratinocytes, from which we can recover cells for further culture and use for the generation of skin equivalent in vitro. In conclusion, cutaneous cell isolation and cell culture and expansion were successfully developed. To the authors’ best knowledge, this is the first study reporting isolation and culture of keratinocytes and fibroblasts from feline skin. However, these are preliminary results and thus, the development of autologous-engineered feline skin is still in process.Keywords: cat, fibroblasts, keratinocytes, skin equivalent, wound
Procedia PDF Downloads 1083671 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis
Procedia PDF Downloads 2913670 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2083669 Cryptosporidium Parvum oocytic Antigen Induced a Pro-Inflammatory DC Phenotype
Authors: Connick K, Lalor R, Murphy A, O’Neill S. M., Rabab S. Zalat, Eman E. El Shanawany
Abstract:
Cryptosporidium parvum is an opportunistic intracellular parasite that causes mild to severe diarrhea in human and animal populations and is an important zoonotic disease globally. In immunocompromised hosts, infection Canbe life-threatening as no effective treatments are currently available to control infection. To increase our understanding of the mechanisms that play a role in host-parasite interactions at the level of the immune response, we investigated the effects of Cryptosporidium parvum antigen (CPA) on bone marrow-derived (DCS). Herein we examined cytokine secretion and cell surface marker expression on DCs exposed to CPA. We also measured cytokine production in CD4+ cells co-cultured with CPA primed DCs in the presence of anti-CD3. CPA induced a significant increase in the production of interleukin(IL)-12p40, IL-10, IL-6, and TNF-α by DCs and enhanced the expression of the cell surface markers TLR4, CD80, CD86, and MHC11. CPA primed DC co-cultured in the presence of anti-CD3 with CD4+ T-cells inhibited the secretion of Th2 associated cytokines, notably IL-5 and IL-13, with no effects on the secretions of interferon (IFN)-γ, IL-2, IL-17, and IL-10. These findings support studies in the literature that CPA can induce the full maturation of DCs that subsequently initiate Th1 immune responses critical to the resolution of C. parvum infection.Keywords: cryptosporidium parvum, dendritic cells, IL-12 p70, cell surface marker
Procedia PDF Downloads 1733668 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1103667 Investigating the Successes of in vitro Embryogenesis
Authors: Zelikha Labbani
Abstract:
The in vitro isolated microspore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a microspore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the microspore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of microspore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, microspore became a strategy to achieve various objectives particularly in genetic engineering. In this communication we would show the most recent advances in the producing haploid embryos via in vitro isolated microspore culture.Keywords: in vitro isolated microspore culture, success, haploid cells, bioinformatics, biomedicine
Procedia PDF Downloads 475