Search results for: line ampacity prediction
3580 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 893579 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 553578 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3383577 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 1373576 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras
Abstract:
Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality
Procedia PDF Downloads 3443575 Applying Wavelet Transform to Ferroresonance Detection and Protection
Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang
Abstract:
Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer
Procedia PDF Downloads 4943574 MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligoa
Authors: Anupama Sahoo, Bongyong Lee, Katia Boniface, Julien Seneschal, Sanjaya K. Sahoo, Tatsuya Seki, Chunyan Wang, Soumen Das, Xianlin Han, Michael Steppie, Sudipta Seal, Alain Taieb, Ranjan J. Perera
Abstract:
Vitiligo is a common, chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has a complex immune, genetic, environmental, and biochemical etiology, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. Here we characterized the human vitiligo cell line PIG3V and the normal human melanocytes, HEM-l by RNA-sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched miR-211, a known metabolic switch in non-pigmented melanoma cells, was severely downregulated in vitiligo cell line PIG3V and skin biopsies from vitiligo patients, while its novel predicted targets transcriptional co-activator PGC1-α (PPARGC1A), ribonucleotide reductase regulatory subunit M2 (RRM2), and serine-threonine protein kinase TAO1 (TAOK1) were reciprocally upregulated. miR-211 binds to PGC1-α 3’UTR locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated miR-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of miR-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo.Keywords: metabolism, microRNA, mitochondria, vitiligo
Procedia PDF Downloads 3653573 Storms Dynamics in the Black Sea in the Context of the Climate Changes
Authors: Eugen Rusu
Abstract:
The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.Keywords: Black Sea, extreme storms, SWAN simulations, waves
Procedia PDF Downloads 2473572 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test
Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari
Abstract:
Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.Keywords: noor sand, liquefaction, undrained test, steady state
Procedia PDF Downloads 4273571 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 533570 The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach
Authors: Shivani Sharma, Prashant Saxena, Inamul Hasan Madar
Abstract:
Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration.Keywords: evolution, phenotypes, epigenetics, LWS gene, G-P map
Procedia PDF Downloads 5193569 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1403568 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 933567 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 833566 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 2373565 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section
Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert
Abstract:
Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics
Procedia PDF Downloads 2563564 Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study
Authors: Khalid Iqbal
Abstract:
This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.Keywords: 3D dosimetry, PRESAGE®, IMRT, QA, EBT2 GAFCHROMIC film
Procedia PDF Downloads 4143563 The Effect of the Combination of Methotrexate Nanoparticles and TiO2 on Breast Cancer
Authors: Nusaiba Al-Nemrawi, Belal Al-Husein
Abstract:
Methotrexate (MTX) is a stoichiometric inhibitor of dihydrofolate reductase, which is essential for DNA synthesis. MTX is a chemotherapeutic agent used for treating many types of cancer cells. However, cells’ resistant to MTX is very common and its pharmacokinetic behavior is highly problematic. of MTX within tumor cells, we propose encapsulation of antitumor drugs in nanoparticulated systems. Chitosan (CS) is a naturally occurring polymer that is biocompatibe, biodegradable, non-toxic, cationic and bioadhesive. CS nanoparticles (CS-NPs) have been used as drug carrier for targeted delivery. Titanium dioxide (TiO2), a natural mineral oxide, which is used in biomaterials due to its high stability and antimicrobial and anticorrosive properties. TiO2 showed a potential as a tumor suppressor. In this study a new formulation of MTX loaded in CS NPs (CS-MTX NPs) and coated with Titanium oxide (TiO2) was prepared. The mean particle size, zeta potential, polydispersity index were measured. The interaction between CS NPs and TiO2 NPs was confirmed using FTIR and XRD. CS-MTX NPs was studied in vitro using the tumor cell line MCF-7 (human breast cancer). The results showed that CS-MTX has a size around 169 nm and as they were coated with TiO2, the size ranged between and depending on the ratio of CS-MTX to TiO2 ratio used in the preparation. All NPs (uncoated and coated carried positive charges and were monodispersed. The entrapment efficacy was around 65%. Both FTIR and XRD proved that TiO2 interacted with CS-MTX NPs. The drug invitro release was controlled and sustained over days. Finally, the studied in vitro using the tumor cell line MCF-7 suggested that combining nanomaterials with anticancer drugs CS-MTX NPs may be more effective than free MTX for cancer treatment. In conclusion, the combination of CS-MTX NPs and TiO2 NPs showed excellent time-dependent in vitro antitumor behavior, therefore, can be employed as a promising anticancer agent to attain efficient results towards MCF-7 cells.Keywords: Methotrexate, Titanium dioxide, Chitosan nanoparticles, cancer
Procedia PDF Downloads 933562 Impact Force Difference on Natural Grass Versus Synthetic Turf Football Fields
Authors: Nathaniel C. Villanueva, Ian K. H. Chun, Alyssa S. Fujiwara, Emily R. Leibovitch, Brennan E. Yamamoto, Loren G. Yamamoto
Abstract:
Introduction: In previous studies of high school sports, over 15% of concussions were attributed to contact with the playing surface. While artificial turf fields are increasing in popularity due to lower maintenance costs, artificial turf has been associated with more ankle and knee injuries, with inconclusive data on concussions. In this study, natural grass and artificial football fields were compared in terms of deceleration on fall impact. Methods: Accelerometers were placed on the forehead, apex of the head, and right ear of a Century Body Opponent Bag (BOB) manikin. A Riddell HITS football helmet was secured onto the head of the manikin over the accelerometers. This manikin was dropped onto natural grass (n = 10) and artificial turf (n = 9) high school football fields. The manikin was dropped from a stationary position at a height of 60 cm onto its front, back, and left side. Each of these drops was conducted 10 times at the 40-yard line, 20-yard line, and endzone. The net deceleration on impact was calculated as a net vector from each of the three accelerometers’ x, y, and z vectors from the three different locations on the manikin’s head (9 vector measurements per drop). Results: Mean values for the multiple drops were calculated for each accelerometer and drop type for each field. All accelerometers in forward and backward falls and one accelerometer in side falls showed significantly greater impact force on synthetic turf compared to the natural grass surfaces. Conclusion: Impact force was higher on synthetic fields for all drop types for at least one of the accelerometer locations. These findings suggest that concussion risk might be higher for athletes playing on artificial turf fields.Keywords: concussion, football, biomechanics, sports
Procedia PDF Downloads 1573561 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries
Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand
Abstract:
Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.
Procedia PDF Downloads 733560 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants
Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi
Abstract:
Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening
Procedia PDF Downloads 1433559 Looking beyond Corporate Social Responsibility to Sustainable Development: Conceptualisation and Theoretical Exploration
Authors: Mercy E. Makpor
Abstract:
Traditional Corporate Social Responsibility (CSR) idea has gone beyond just ensuring safety environments, caring about global warming and ensuring good living standards and conditions for the society at large. The paradigm shift is towards a focus on strategic objectives and the long-term value creation for both businesses and the society at large for a realistic future. As an important approach to solving social and environment issues, CSR has been accepted globally. Yet the approach is expected to go beyond where it is currently. So much is expected from businesses and governments at every level globally and locally. This then leads to the original idea of the concept, that is, how it originated and how it has been perceived over the years. Little wonder there has been a lot of definitions surrounding the concept without a major globally acceptable definition of it. The definition of CSR given by the European Commission will be considered for the purpose of this paper. Sustainable Development (SD), on the other hand, has been viewed in recent years as an ethical concept explained in the UN-Report termed “Our Common Future,” which can also be referred to as the Brundtland report. The report summarises the need for SD to take place in the present without comprising the future. However, the recent 21st-century framework on sustainability known as the “Triple Bottom Line (TBL)” framework, has added its voice to the concepts of CSR and sustainable development. The TBL model is of the opinion that businesses should not only report on their financial performance but also on their social and environmental performances, highlighting that CSR has gone beyond just the “material-impact” approach towards a “Future-Oriented” approach (sustainability). In this paper, the concept of CSR is revisited by exploring the various theories therein. The discourse on the concepts of sustainable development and sustainable development frameworks will also be indicated, thereby inducing these into how CSR can benefit both businesses and their stakeholders as well as the entirety of the society, not just for the present but for the future. It does this by exploring the importance of both concepts (CSR and SD) and concludes by making recommendations for a more empirical research in the near future.Keywords: corporate social responsibility, sustainable development, sustainability, triple bottom line model
Procedia PDF Downloads 2443558 De-Pigmentary Effect of Ayurvedic Treatment on Hyper-Pigmentation of Skin Due to Chloroquine: A Case Report
Authors: Sunil Kumar, Rajesh Sharma
Abstract:
Toxic epidermal necrolysis, pruritis, rashes, lichen planus like eruption, hyper pigmentation of skin are rare toxic effects of choloroquine used over a long time. Skin and mucus membrane hyper pigmentation is generally of a bluish black or grayish color and irreversible after discontinuation of the drug. According to Ayurveda, Dushivisha is the name given to any poisonous substance which is not fully endowed with the qualities of poison by nature (i.e. it acts as an impoverished or weak poison) and because of its mild potency, it remains in the body for many years causing various symptoms, one among them being discoloration of skin.The objective of this case report is to investigate the effect of Ayurvedic management of chloroquine induced hyper-pigmentation on the line of treatment of Dushivisha. Case Report: A 26-year-old female was suffering from hyper-pigmentation of the skin over the neck, forehead, temporo-mandibular joints, upper back and posterior aspect of both the arms since 8 years had history of taking Chloroquine came to Out Patient Department of National Institute of Ayurveda, Jaipur, India in Jan. 2015. The routine investigations (CBC, ESR, Eosinophil count) were within normal limits. Punch biopsy skin studied for histopathology under hematoxylin and eosin staining showed epidermis with hyper-pigmentation of the basal layer. In the papillary dermis as well as deep dermis there were scattered melanophages along with infiltration by mononuclear cells. There was no deposition of amyloid-like substances. These histopathological findings were suggestive of Chloroquine induced hyper-pigmentation. The case was treated on the line of treatment of Dushivisha and was given Vamana and Virechana (therapeutic emesis and purgation) every six months followed by Snehana karma (oleation therapy) with Panchatikta Ghrit and Swedana (sudation). Arogyavardhini Vati -1 g, Dushivishari Vati 500 mg, Mahamanjisthadi Quath 20 ml were given twelve hourly and Aragwadhadi Quath 25 ml at bed time orally. The patient started showing lightening of the pigments after six months and almost complete remission after 12 months of the treatment. Conclusion: This patient presented with the Dushivisha effect of Chloroquineandwas administered two relevant procedures from Panchakarma viz. Vamana and Virechana. Both Vamana and Virechanakarma here referred to Shodhana karma (purification procedures) eliminates accumulated toxins from the body. In this process, oleation dislodge the toxins from the tissues and sudation helps to bring them to the alimentary tract. The line of treatment did not target direct hypo pigmentary effects; rather aimed to eliminate the Dushivisha. This gave promising results in this condition.Keywords: Ayurveda, chloroquine, Dushivisha, hyper-pigmentation
Procedia PDF Downloads 2343557 Topological Language for Classifying Linear Chord Diagrams via Intersection Graphs
Authors: Michela Quadrini
Abstract:
Chord diagrams occur in mathematics, from the study of RNA to knot theory. They are widely used in theory of knots and links for studying the finite type invariants, whereas in molecular biology one important motivation to study chord diagrams is to deal with the problem of RNA structure prediction. An RNA molecule is a linear polymer, referred to as the backbone, that consists of four types of nucleotides. Each nucleotide is represented by a point, whereas each chord of the diagram stands for one interaction for Watson-Crick base pairs between two nonconsecutive nucleotides. A chord diagram is an oriented circle with a set of n pairs of distinct points, considered up to orientation preserving diffeomorphisms of the circle. A linear chord diagram (LCD) is a special kind of graph obtained cutting the oriented circle of a chord diagram. It consists of a line segment, called its backbone, to which are attached a number of chords with distinct endpoints. There is a natural fattening on any linear chord diagram; the backbone lies on the real axis, while all the chords are in the upper half-plane. Each linear chord diagram has a natural genus of its associated surface. To each chord diagram and linear chord diagram, it is possible to associate the intersection graph. It consists of a graph whose vertices correspond to the chords of the diagram, whereas the chord intersections are represented by a connection between the vertices. Such intersection graph carries a lot of information about the diagram. Our goal is to define an LCD equivalence class in terms of identity of intersection graphs, from which many chord diagram invariants depend. For studying these invariants, we introduce a new representation of Linear Chord Diagrams based on a set of appropriate topological operators that permits to model LCD in terms of the relations among chords. Such set is composed of: crossing, nesting, and concatenations. The crossing operator is able to generate the whole space of linear chord diagrams, and a multiple context free grammar able to uniquely generate each LDC starting from a linear chord diagram adding a chord for each production of the grammar is defined. In other words, it allows to associate a unique algebraic term to each linear chord diagram, while the remaining operators allow to rewrite the term throughout a set of appropriate rewriting rules. Such rules define an LCD equivalence class in terms of the identity of intersection graphs. Starting from a modelled RNA molecule and the linear chord, some authors proposed a topological classification and folding. Our LCD equivalence class could contribute to the RNA folding problem leading to the definition of an algorithm that calculates the free energy of the molecule more accurately respect to the existing ones. Such LCD equivalence class could be useful to obtain a more accurate estimate of link between the crossing number and the topological genus and to study the relation among other invariants.Keywords: chord diagrams, linear chord diagram, equivalence class, topological language
Procedia PDF Downloads 2013556 Anti-Oxidant and Anti-Cancer Activity of Helix aspersa Aqueous Extract
Authors: Ibtissem El Ouar, Cornelia Braicu, Dalila Naimi, Alexendru Irimie, Ioana Berindan-Neagoe
Abstract:
Helix aspersa, 'the garden snail' is a big land snail widely found in the Mediterranean countries, it is one of the most consumed species in the west of Algeria. It is commonly used in zootherapy to purify blood and to treat cardiovascular diseases and liver problems. The aim of our study is to investigate, the antitumor activity of an aqueous extract from Helix aspersa prepared by the traditional method on Hs578T; a triple negative breast cancer cell line. Firstly, the free radical scavenging activity of H. aspersa extract was assessed by measuring its capability for scavenging the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), as well as its ability to reduce ferric ion by the FRAP assay (ferric reducing ability). The cytotoxic effect of H. aspersa extract against Hs578T cells was evaluated by the MTT test (3-(4,5- dimethylthiazl-2-yl)-2,5- diphenyltetrazolium bromide)) while the mode of cell death induced by the extract has been determined by fluorescence microscopy using acredine orange/ethidium bromide (AO/EB) probe. The level of TNFα has also measured in cell medium by ELISA method. The results suggest that H. aspersa extract has an antioxidant activity, especially at high concentrations, it can reduce DPPH radical and ferric ion. The MTT test shows that H. aspersa extract has a great cytotoxic effect against breast cancer cells, the IC50 value correspond of the dilution 1% of the crude extract. Moreover, the AO/EB staining shows that TNFα induced necrosis is the main form of cell death induced by the extract. In conclusion, the present study may open new perspectives in the search for new natural anticancer drugs.Keywords: breast cancer, Helix aspersa, Hs578t cell line, necrosis
Procedia PDF Downloads 4203555 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5823554 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1363553 Apoptosis Pathway Targeted by Thymoquinone in MCF7 Breast Cancer Cell Line
Authors: M. Marjaneh, M. Y. Narazah, H. Shahrul
Abstract:
Array-based gene expression analysis is a powerful tool to profile expression of genes and to generate information on therapeutic effects of new anti-cancer compounds. Anti-apoptotic effect of thymoquinone was studied in MCF7 breast cancer cell line using gene expression profiling with cDNA micro array. The purity and yield of RNA samples were determined using RNeasyPlus Mini kit. The Agilent RNA 6000 Nano LabChip kit evaluated the quantity of the RNA samples. AffinityScript RT oligo-dT promoter primer was used to generate cDNA strands. T7 RNA polymerase was used to convert cDNA to cRNA. The cRNA samples and human universal reference RNA were labelled with Cy-3-CTP and Cy-5-CTP, respectively. Feature Extraction and GeneSpring software analysed the data. The single experiment analysis revealed involvement of 64 pathways with up-regulated genes and 78 pathways with down-regulated genes. The MAPK and p38-MAPK pathways were inhibited due to the up-regulation of PTPRR gene. The inhibition of p38-MAPK suggested up-regulation of TGF-ß pathway. Inhibition of p38 - MAPK caused up-regulation of TP53 and down-regulation of Bcl2 genes indicating involvement of intrinsic apoptotic pathway. Down-regulation of CARD16 gene as an adaptor molecule regulated CASP1 and suggested necrosis-like programmed cell death and involvement of caspase in apoptosis. Furthermore, down-regulation of GPCR, EGF-EGFR signalling pathways suggested reduction of ER. Involvement of AhR pathway which control cytochrome P450 and glucuronidation pathways showed metabolism of Thymoquinone. The findings showed differential expression of several genes in apoptosis pathways with thymoquinone treatment in estrogen receptor-positive breast cancer cells.Keywords: cDNA microarray, thymoquinone, CARD16, PTPRR, CASP10
Procedia PDF Downloads 3463552 Secondary Charged Fragments Tracking for On-Line Beam Range Monitoring in Particle Therapy
Authors: G. Traini, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, S. M. Valle, C. Voena, V. Patera
Abstract:
In Particle Therapy (PT) treatments a large amount of secondary particles, whose emission point is correlated to the dose released in the crossed tissues, is produced. The measurement of the secondary charged fragments component could represent a valid technique to monitor the beam range during the PT treatments, that is a still missing item in the clinical practice. A sub-millimetrical precision on the beam range measurement is required to significantly optimise the technique and to improve the treatment quality. In this contribution, a detector, named Dose Profiler (DP), is presented. It is specifically planned to monitor on-line the beam range exploiting the secondary charged particles produced in PT Carbon ions treatment. In particular, the DP is designed to track the secondary fragments emitted at large angles with respect to the beam direction (mainly protons), with the aim to reconstruct the spatial coordinates of the fragment emission point extrapolating the measured track toward the beam axis. The DP is currently under development within of the INSIDE collaboration (Innovative Solutions for In-beam Dosimetry in hadrontherapy). The tracker is made by six layers (20 × 20 cm²) of BCF-12 square scintillating fibres (500 μm) coupled to Silicon Photo-Multipliers, followed by two plastic scintillator layers of 6 mm thickness. A system of front-end boards based on FPGAs arranged around the detector provides the data acquisition. The detector characterization with cosmic rays is currently undergoing, and a data taking campaign with protons will take place in May 2017. The DP design and the performances measured with using MIPs and protons beam will be reviewed.Keywords: fragmentation, monitoring, particle therapy, tracking
Procedia PDF Downloads 2323551 Proposed Algorithms to Assess Concussion Potential in Rear-End Motor Vehicle Collisions: A Meta-Analysis
Authors: Rami Hashish, Manon Limousis-Gayda, Caitlin McCleery
Abstract:
Introduction: Mild traumatic brain injuries, also referred to as concussions, represent an increasing burden to society. Due to limited objective diagnostic measures, concussions are diagnosed by assessing subjective symptoms, often leading to disputes to their presence. Common biomechanical measures associated with concussion are high linear and/or angular acceleration to the head. With regards to linear acceleration, approximately 80g’s has previously been shown to equate with a 50% probability of concussion. Motor vehicle collisions (MVCs) are a leading cause of concussion, due to high head accelerations experienced. The change in velocity (delta-V) of a vehicle in an MVC is an established metric for impact severity. As acceleration is the rate of delta-V with respect to time, the purpose of this paper is to determine the relation between delta-V (and occupant parameters) with linear head acceleration. Methods: A meta-analysis was conducted for manuscripts collected using the following keywords: head acceleration, concussion, brain injury, head kinematics, delta-V, change in velocity, motor vehicle collision, and rear-end. Ultimately, 280 studies were surveyed, 14 of which fulfilled the inclusion criteria as studies investigating the human response to impacts, reporting head acceleration, and delta-V of the occupant’s vehicle. Statistical analysis was conducted with SPSS and R. The best fit line analysis allowed for an initial understanding of the relation between head acceleration and delta-V. To further investigate the effect of occupant parameters on head acceleration, a quadratic model and a full linear mixed model was developed. Results: From the 14 selected studies, 139 crashes were analyzed with head accelerations and delta-V values ranging from 0.6 to 17.2g and 1.3 to 11.1 km/h, respectively. Initial analysis indicated that the best line of fit (Model 1) was defined as Head Acceleration = 0.465Keywords: acceleration, brain injury, change in velocity, Delta-V, TBI
Procedia PDF Downloads 231