Search results for: human action classification
11082 The Epistemology of Human Rights Cherished in Islamic Law and Its Compatibility with International Law
Authors: Malik Imtiaz Ahmad
Abstract:
Human beings are the super organism granted the gift of consciousness of life by the Almighty God and endowed with an intrinsic legal value to their humanity that shall be guarded and protected respecting dignity regardless of your cultural, religious, race, or physical background; you want to be treated equally for a reason for being human. Islam graces the essential integrity of humanity and confirms the freedom and accountability impact on individuality and the open societal sphere, including the moral, economic, and political aspects. Human Rights allow people to live with dignity, equality, justice, freedom, and peace. The Kantian approach to morality expresses that ethical actions follow universal moral laws. Hence, human rights are based upon the normative approaches setting the international standards to promote, guard, and protect the fundamental rights of the people. Islam is a divine religion commanding human rights based upon the principles of social justice and regulates all facets of the moral and spiritual ethics of Muslims besides bringing balance abreast in the non-Muslims to respect their lives with safety and security and property. The Canon law manifests the faith and equality amongst Christianity, regulating the communal dignity to build and promote the sanctity of Holy life (can. 208 to 223). This concept of the community is developed after the insight of the Islamic 'canon law', which is the code of revelation itself and inseparable from the natural part of the salvation of mankind. The etymology and history of human rights is a polemical debate in a preview of Islamic and Western culture. On the other hand, international law is meticulous about the fundamental part of Conon law that focuses on the communal political, social and economic relationship. The evolving process of human rights is considered to be an exclusive universal thought regarding an open society that forms a legal base for the constituent of international instruments of the protection of Human Rights, viz. UDHR. On the other side, Muslim scholars emphasize that human rights are devolving around Islamic law. Both traditions need a dire explanation of contemporary openness for bringing the harmonious universal law acceptable and applicable to the international communities concerning the anthropology of political, economic, and social aspects of a human being.Keywords: human rights-based approach (HRBA), human rights in Islam, evolution of universal human rights, conflict in western, Islamic human rights
Procedia PDF Downloads 8811081 Inclusion Advances of Disabled People in Higher Education: Possible Alignment with the Brazilian Statute of the Person with Disabilities
Authors: Maria Cristina Tommaso, Maria Das Graças L. Silva, Carlos Jose Pacheco
Abstract:
Have the advances of the Brazilian legislation reflected or have been consonant with the inclusion of PwD in higher education? In 1990 the World Declaration on Education for All, a document organized by the United Nations Educational, Scientific and Cultural Organization (UNESCO), stated that the basic learning needs of people with disabilities, as they were called, required special attention. Since then, legislation in signatory countries such as Brazil has made considerable progress in guaranteeing, in a gradual and increasing manner, the rights of persons with disabilities to education. Principles, policies, and practices of special educational needs were created and guided action at the regional, national and international levels on the structure of action in Special Education such as administration, recruitment of educators and community involvement. Brazilian Education Law No. 3.284 of 2003 ensures inclusion of people with disabilities in Brazilian higher education institutions and also in 2015 the Law 13,146/2015 - Brazilian Law on the Inclusion of Persons with Disabilities (Statute of the Person with Disabilities) regulates the inclusion of PwD by the guarantee of their rights. This study analyses data related to people with disability inclusion in High Education in the south region of Rio de Janeiro State - Brazil during the period between 2008 and 2018, based in its correlation with the changes in the Brazilian legislation in the last ten years that were subjected by PwD inclusion processes in the Brazilian High Education Systems. The region studied is composed by sixteen cities and this research refers to the largest one, Volta Redonda that represents 25 percent of the total regional population. The PwD reception process had the dicing data at the Volta Redonda University Center with 35 percent of high education students in this territorial area. The research methodology analyzed the changes occurring in the legislation about the inclusion of people with disability in High Education in the last ten years and its impacts on the samples of this study during the period between 2008 and 2018. It was verified an expressive increasing of the number of PwD students, from two in 2008 to 190 PwD students in 2018. The data conclusions are presented in quantitative terms and the aim of this study was to verify the effectiveness of the PwD inclusion in High Education, allowing visibility of this social group. This study verified that the fundamental human rights guarantees have a strong relation to the advances of legislation and the State as a guarantor instance of the rights of the people with disability and must be considered a mean of consolidation of their education opportunities isonomy. The recognition of full rights and the inclusion of people with disabilities requires the efforts of those who have decision-making power. This study aimed to demonstrate that legislative evolution is an effective instrument in the social integration of people with disabilities. The study confirms the fundamental role of the state in guaranteeing human rights and demonstrates that legislation not only protects the interests of vulnerable social groups, but can also, and this is perhaps its main mission, to change behavior patterns and provoke the social transformation necessary to the reduction of inequality of opportunity.Keywords: high education, inclusion, legislation, people with disability
Procedia PDF Downloads 15111080 The Effect of Principled Human Resource Management and Training Based on Existing Standards in Order to Improve the Quality of Construction Projects
Authors: Arsalan Salahi
Abstract:
Today, the number of changes in the construction industry and urban mass house building is increasing, which makes you need to pay more attention to targeted planning for human resource management and training. The human resources working in the construction industry have various problems and deficiencies, and in order to solve these problems, there is a need for basic management and training of these people in order to lower the construction costs and increase the quality of the projects, especially in mass house building projects. The success of any project in reaching short and long-term professional goals depends on the efficient combination of work tools, financial resources, raw materials, and most importantly, human resources. Today, due to the complexity and diversity of each project, specialized management fields have emerged to maximize the potential benefits of each component of that project. Human power is known as the most important resource in construction projects for its successful implementation, but unfortunately, due to the low cost of human power compared to other resources, such as materials and machinery, little attention is paid to it. With the correct management and training of human resources, which depends on its correct planning and development, it is possible to improve the performance of construction projects. In this article, the training and motivation of construction industry workers and their effects on the effectiveness of projects in this industry have been researched. In this regard, some barriers to the training and motivation of construction workers and personnel have been identified and solutions have been provided for construction companies. Also, the impact of workers and unskilled people on the efficiency of construction projects is investigated. The results of the above research show that by increasing the use of correct and basic training for human resources, we will see positive results and effects on the performance of construction projects.Keywords: human resources, construction industry, principled training, skilled and unskilled workers
Procedia PDF Downloads 9211079 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 12011078 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction
Authors: Koichi Kurita
Abstract:
In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.Keywords: human walking motion, access control, electrostatic induction, alarm monitoring
Procedia PDF Downloads 35611077 Therapeutic Potential of mAb KP52 in Human and Feline Cancers
Authors: Abigail Tan, Heng Liang Tan, Vanessa Ding, James Hui, Eng Hin Lee, Andre Choo
Abstract:
Introduction: Comparative oncology investigates the similarities in spontaneous carcinogenesis between humans and animals, in order to identify treatments that can benefit these patients. Companion animals (CA), like canines and felines, are of special interest when it comes to studying human cancers due to their exposure to the same environmental factors and develop tumours with similar features. The purpose of this study is to explore the cross-reactivity of monoclonal antibodies (mAbs) across cancers in humans and CA. Material and Methods: A panel of CA mAbs generated in the lab was screened on multiple human cancer cell lines through flow cytometry to identify for positive binders. Shortlisted candidates were then characterised by biochemical and functional assays e.g., antibody-drug conjugate (ADC) and western blot assays, including glycan studies. Results: Candidate mAb KP52 was generated from whole-cell immunisation using feline mammary carcinoma. KP52 showed strong positive binding to human cancer cells, such as breast cancer and ovarian cancer. Furthermore, KP52 demonstrated strong killing ( > 50%) as an ADC with Saporin as the payload. Western blot results revealed the molecular weight of the antigen targets to be approximately 45kD and 50kD under reduced conditions. Glycan studies suggest that the epitope is glycan in nature, specifically an O-linked glycan. Conclusion: Candidate mAb KP52 has a therapeutic potential as an ADC against feline mammary cancer, human ovarian cancer, human mammary cancer, human pancreatic cancer, and human gastric cancer.Keywords: ADC, comparative oncology, mAb, therapeutic
Procedia PDF Downloads 17111076 Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis
Authors: Wenbo Du, Xiaomei Ma
Abstract:
With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future.Keywords: cognitive diagnostic assessment, diagnostic feedback, EFL reading, quantile regression
Procedia PDF Downloads 14511075 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 2011074 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 15411073 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 61111072 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach
Authors: Kristin Drexler
Abstract:
Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize
Procedia PDF Downloads 9011071 Using Participatory Action Research with Episodic Volunteers: Learning from Urban Agriculture Initiatives
Authors: Rebecca Laycock
Abstract:
Many Urban Agriculture (UA) initiatives, including community/allotment gardens, Community Supported Agriculture, and community/social farms, depend on volunteers. However, initiatives supported or run by volunteers are often faced with a high turnover of labour as a result of the involvement of episodic volunteers (a term describing ad hoc, one-time, and seasonal volunteers), leading to challenges with maintaining project continuity and retaining skills/knowledge within the initiative. This is a notable challenge given that food growing is a knowledge intensive activity where the fruits of labour appear months or sometimes years after investment. Participatory Action Research (PAR) is increasingly advocated for in the field of UA as a solution-oriented approach to research, providing concrete results in addition to advancing theory. PAR is a cyclical methodological approach involving researchers and stakeholders collaboratively 'identifying' and 'theorising' an issue, 'planning' an action to address said issue, 'taking action', and 'reflecting' on the process. Through iterative cycles and prolonged engagement, the theory is developed and actions become better tailored to the issue. The demand for PAR in UA research means that understanding how to use PAR with episodic volunteers is of critical importance. The aim of this paper is to explore (1) the challenges of doing PAR in UA initiatives with episodic volunteers, and (2) how PAR can be harnessed to advance sustainable development of UA through theoretically-informed action. A 2.5 year qualitative PAR study on three English case study student-led food growing initiatives took place between 2014 and 2016. University UA initiatives were chosen as exemplars because most of their volunteers were episodic. Data were collected through 13 interviews, 6 workshops, and a research diary. The results were thematically analysed through eclectic coding using Computer-Assisted Qualitative Data Analysis Software (NVivo). It was found that the challenges of doing PAR with transient participants were (1) a superficial understanding of issues by volunteers because of short term engagement, resulting in difficulties ‘identifying’/‘theorising’ issues to research; (2) difficulties implementing ‘actions’ given those involved in the ‘planning’ phase often left by the ‘action’ phase; (3) a lack of capacity of participants to engage in research given the ongoing challenge of maintaining participation; and (4) that the introduction of the researcher acted as an ‘intervention’. The involvement of a long-term stakeholder (the researcher) changed the group dynamics, prompted critical reflections that had not previously taken place, and improved continuity. This posed challenges for providing a genuine understanding the episodic volunteering PAR initiatives, and also challenged the notion of what constitutes an ‘intervention’ or ‘action’ in PAR. It is recommended that researchers working with episodic volunteers using PAR should (1) adopt a first-person approach by inquiring into the researcher’s own experience to enable depth in theoretical analysis to manage the potentially superficial understandings by short-term participants; and (2) establish safety mechanisms to address the potential for the research to impose artificial project continuity and knowledge retention that will end when the research does. Through these means, we can more effectively use PAR to conduct solution-oriented research about UA.Keywords: community garden, continuity, first-person research, higher education, knowledge retention, project management, transience, university
Procedia PDF Downloads 24811070 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 15311069 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 33011068 Marketing Management and Cultural Learning Center: The Case Study of Arts and Cultural Office, Suansunandha Rajabhat University
Authors: Pirada Techaratpong
Abstract:
This qualitative research has 2 objectives: to study marketing management of the cultural learning center in Suansunandha Rajabhat University and to suggest guidelines to improve its marketing management. This research is based on a case study of the Arts and Culture Office in Suansunandha Rajabhat University, Bangkok. This research found the Art and Culture Office has no formal marketing management. However, the marketing management is partly covered in the overall business plan, strategic plan, and action plan. The process can be divided into 5 stages. The marketing concept has long been introduced to its policy but not apparently put into action due to inflexible system. Some gaps are found in the process. The research suggests the Art and Culture Office implement the concept of marketing orientation, meeting the needs and wants of its target customers and adapt to the changing situation. Minor guidelines for improvement are provided.Keywords: cultural learning center, marketing, management, museum
Procedia PDF Downloads 38411067 Slowness in Architecture: The Pace of Human Engagement with the Built Environment
Authors: Jaidev Tripathy
Abstract:
A human generation’s lifestyle, behaviors, habits, and actions are governed heavily by homogenous mindsets. But the current scenario is witnessing a rapid gap in this homogeneity as a result of an intervention, or rather, the dominance of the digital revolution in the human lifestyle. The current mindset for mass production, employment, multi-tasking, rapid involvement, and stiff competition to stay above the rest has led to a major shift in human consciousness. Architecture, as an entity, is being perceived differently. The screens are replacing the skies. The pace at which operation and evolution is taking place has increased. It is paradoxical, that time seems to be moving faster despite the intention to save time. Parallelly, there is an evident shift in architectural typologies spanning across different generations. The architecture of today is now seems influenced heavily from here and there. Mass production of buildings and over-exploitation of resources giving shape to uninspiring algorithmic designs, ambiguously catering to multiple user groups, has become a prevalent theme. Borrow-and-steal replaces influence, and the diminishing depth in today’s designs reflects a lack of understanding and connection. The digitally dominated world, perceived as an aid to connect and network, is making humans less capable of real-life interactions and understanding. It is not wrong, but it doesn’t seem right either. The engagement level between human beings and the built environment is a concern which surfaces. This leads to a question: Does human engagement drive architecture, or does architecture drive human engagement? This paper attempts to relook at architecture's capacity and its relativity with pace to influence the conscious decisions of a human being. Secondary research, supported with case examples, helps in understanding the translation of human engagement with the built environment through physicality of architecture. The procedure, or theme, is pace and the role of slowness in the context of human behaviors, thus bridging the widening gap between the human race and the architecture themselves give shape to, avoiding a possible future dystopian world.Keywords: junkspace, pace, perception, slowness
Procedia PDF Downloads 10811066 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis
Authors: R. Periyasamy, Deepak Joshi, Sneh Anand
Abstract:
Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis
Procedia PDF Downloads 49511065 Modified Naive Bayes-Based Prediction Modeling for Crop Yield Prediction
Authors: Kefaya Qaddoum
Abstract:
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.Keywords: tomato yield prediction, naive Bayes, redundancy, WSG
Procedia PDF Downloads 23011064 Measurement and Analysis of Human Hand Kinematics
Authors: Tamara Grujic, Mirjana Bonkovic
Abstract:
Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement
Procedia PDF Downloads 46011063 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods
Authors: H. J. Wattimanela, U. S. Passaribu, A. N. T. Puspito, S. W. Indratno
Abstract:
Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.Keywords: molluca collision zone, partition regions, conventional statistical methods, earthquakes, classifications, disaster management
Procedia PDF Downloads 49511062 The Appeal of Vocal Islamism in the West: The Case of Hizb ut-Tahrir vis-à-vis Its Competitors
Authors: Elisa Orofino
Abstract:
Islamism is a very debated topic in the West but almost exclusively explored in its violent forms. Nevertheless, a number of “vocal radical Islamist” groups exist in the West and legally operate because of their non-violent nature. Vocal radicals continually inspire individuals and lead them towards specific goals and priorities, sometimes even towards violence. This paper uses the long-living group Hizb ut-Tahrir (HT) to explore the elements that make the organization appealing to segments of Muslim community in the West. This paper uses three agency variables - reflexive monitoring, the rationalization of action and the motivations for actions – to analyze HT’s appeal vis-à-vis two other Islamist groups, Ikhwan al-Muslimun and Jamaat-e-Islami (JeI), having similar goals and the same high international profile. This paper concludes that HT’s uniqueness is given by its method, detailed vision of the caliphate, consistency over time and the emphasis placed on the caliphate as the leading force of HT’s unchanged motivation for action.Keywords: agency, caliphate, Islamist groups, radicalization, vocal radicals
Procedia PDF Downloads 11911061 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 12911060 Analysis of Human Mental and Behavioral Models for Development of an Electroencephalography-Based Human Performance Management System
Authors: John Gaber, Youssef Ahmed, Hossam A. Gabbar, Jing Ren
Abstract:
Accidents at Nuclear Power Plants (NPPs) occur due to various factors, notable among them being poor safety management and poor safety culture. During abnormal situations, the likelihood of human error is many-fold higher due to the higher cognitive workload. The most common cause of human error and high cognitive workload is mental fatigue. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue using an EEG system. This requires an analysis of the mental model of the NPP operator, changes in brain wave power in response to certain stimuli, and the risk factors on mental fatigue and attention that NPP operators face when performing their tasks. We analyzed these factors and developed an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention hinders their ability to maintain safety.Keywords: brain imaging, EEG, power plant operator, psychology
Procedia PDF Downloads 10111059 An Investigation on Interface Shear Resistance of Twinwall Units for Tank Structures
Authors: Jaylina Rana, Chanakya Arya, John Stehle
Abstract:
Hybrid precast twinwall concrete units, mainly used in basement, core and crosswall construction, are now being adopted in water retaining tank structures. Their use offers many advantages compared with conventional in-situ concrete alternatives, however, the design could be optimised further via a deeper understanding of the unique load transfer mechanisms in the system. In the tank application, twinwall units, which consist of two precast concrete biscuits connected by steel lattices and in-situ concrete core, are subject to bending. Uncertainties about the degree of composite action between the precast biscuits and hence flexural performance of the units necessitated laboratory tests to investigate the interface shear resistance. Testing was also required to assess both the leakage performance and buildability of a variety of joint details. This paper describes some aspects of this novel approach to the design/construction of tank structures as well as selected results from some of the tests that were carried out.Keywords: hybrid construction, twinwall, precast construction, composite action
Procedia PDF Downloads 48111058 Rights, Differences and Inclusion: The Role of Transdisciplinary Approach in the Education for Diversity
Authors: Ana Campina, Maria Manuela Magalhaes, Eusebio André Machado, Cristina Costa-Lobo
Abstract:
Inclusive school advocates respect for differences, for equal opportunities and for a quality education for all, including for students with special educational needs. In the pursuit of educational equity, guaranteeing equality in access and results, it becomes the responsibility of the school to recognize students' needs, adapting to the various styles and rhythms of learning, ensuring the adequacy of curricula, strategies and resources, materials and humans. This paper presents a set of theoretical reflections in the disciplinary interface between legal and education sciences, school administration and management, with the aim of understand the real inclusion characteristics in a balance with the inclusion policies and the need(s) of an education for Human Rights, especially for diversity. Considering the actual social complexity but the important education instruments and strategies, mostly patented in the policies, this paper aims expose the existing contexts opposed to the laws, policies and inclusion educational needs. More than a single study, this research aims to develop a map of the reality and the guidelines to implement the action. The results point to the usefulness and pertinence of a school in which educational managers, teachers, parents, and students, are involved in the creation, implementation and monitoring of flexible curricula and adapted to the educational needs of students, promoting a collaborative work among teachers. We are then faced with a scenario that points to the need to reflect on the legislation and curricular management of inclusive classes and to operationalize the processes of elaboration of curricular adaptations and differentiation in the classroom. The transdisciplinary is a pedagogic and social education perfect approach using the Human Rights binomio – teaching and learning – supported by the inclusion laws according to the realistic needs for an effective successful society construction.Keywords: rights, transdisciplinary, inclusion policies, education for diversity
Procedia PDF Downloads 38711057 Activation of TNF-α from Human Endothelial Cells by Exposure of the Mitochondrial Stress Protein (Hsp60) Secreted from THP-1 Monocytes to High Glucose
Authors: Ryan D. Martinus
Abstract:
Inflammation of the endothelium is an important process leading to diabetic atherosclerosis. However, the molecular mechanisms by which diabetes contributes to endothelial inflammation remain to be established. Using In-vitro cultured Human cells and Hsp60 specific ELISA assays, we show that Hsp60 is not only induced in Human monocyte cells under hyperglycaemic conditions but that the Hsp60 is also secreted from these cells. Furthermore, we also demonstrate that the Hsp60 secreted from these monocyte cells is also able to activate Toll-like receptor-4 (TLR4) from Human endothelial cells. This suggests that a potential link may exist between the hyperglycaemia-induced expression of Hsp60 in monocyte cells and vascular inflammation. Circulating levels of Hsp60 due to mitochondrial stress in diabetes patients could, therefore, be an important modulator of inflammation in endothelial cells and thus contribute to the increased incidences of atherosclerosis in diabetes mellitus.Keywords: mitochondria, Hsp60, inflammation, diabetes mellitus
Procedia PDF Downloads 17911056 Reduction in the Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton
Authors: Nafiseh Ebrahimi, Gautham Muthukumaran, Amir Jafari
Abstract:
Human walking gait is considered to be the most efficient biped walking gait. There are various types of gait human follows during locomotion and arm swing is one of the most important factors which controls and differentiates human gaits. Earlier studies declared a 7% reduction in the metabolic cost due to the arm swing. In this research, we compared different types of arm swings in terms of metabolic cost reduction and then suggested, designed, fabricated and tested a quasi-passive upper body exoskeleton to study the metabolic cost reduction in the folded arm walking gate scenarios. Our experimental results validate a 10% reduction in the metabolic cost of walking aided by the application of the proposed exoskeleton.Keywords: arm swing, MET (metabolic equivalent of a task), calorimeter, oxygen consumption, upper body quasi-passive exoskeleton
Procedia PDF Downloads 15511055 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning
Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.
Abstract:
Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.Keywords: image processing, python, convolution neural network (CNN), machine learning
Procedia PDF Downloads 7611054 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)
Authors: Benghenia Hadj Abd El Kader
Abstract:
Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier
Procedia PDF Downloads 37011053 Integrating Participatory Action and Arts-Based Research: A Methodology for Investigating Generative AI in Elementary Art Education
Authors: Jihane Mossalim
Abstract:
This study proposes a methodological framework that combines Participatory Action Research (PAR) with Arts-Based Research (ABR) to explore the potential of generative AI in elementary art education. By integrating PAR, this framework emphasizes elementary school students’ active participation as co-researchers, engaging with AI technologies and reflecting on their creative journeys. PAR’s iterative cycles of planning, action, observation, and reflection provide a solid structure for involving children in the research process, ensuring that the study is inclusive and reflective of the children’s perspectives. Arts-Based Research, on the other hand, allows for the exploration of AI not just as a tool but as a medium of creative expression. ABR’s emphasis on visual, performative, and creative outputs complements PAR’s inclusive approach, offering a dynamic and flexible way of studying the intersection of technology and art in educational contexts. This combination is particularly valuable as it encourages students to express their ideas and emotions through art, making the learning process more engaging and personally meaningful. Despite the recognized benefits of both PAR and ABR, there remains a notable gap in research that applies these methodologies in combination with elementary school students, particularly in the context of emerging technologies like generative AI. Addressing this gap is crucial, as integrating these approaches can lead to more inclusive and innovative educational practices that cater to the diverse needs of young learners. This chapter seeks to demonstrate how integrating PAR and ABR can empower young learners, giving them a voice in the research process while enriching their creative and critical thinking skills. This chapter will develop a methodology that integrates both theoretical and practical aspects of PAR and ABR, highlighting the challenges and opportunities that emerge when these approaches are integrated. It will also discuss how to adapt these methods for research in the elementary art education, providing a foundation for future inquiry. Further, the chapter will focus on situating these methodological developments in relation to a study that seeks to understand the potential of generative AI in fostering creativity, collaboration, and critical thinking among young learners. Ultimately, this work aims to provide a pioneering example that inspires further exploration and development of educational practices in the digital age.Keywords: participatory action research, arts-based research, generative AI, elementary art education
Procedia PDF Downloads 24