Search results for: ethanol yield
1687 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean
Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe
Abstract:
Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering
Procedia PDF Downloads 2211686 α-Amylase Inhibitory Activity of Some Tunisian Aromatic and Medicinal Plants
Authors: Hamdi Belfeki, Belgacem Chandoul, Mnasser Hassouna, Mondher Mejri
Abstract:
Aqueous and ethanolic extracts of eight Tunisian aromatic and medicinal plants (TAMP) were characterized by studying their composition in polyphenols and also their antiradical and antioxidant capacities. In absence and in the presence of the various extracts, α-amylase from Bacillus subtlis activity, was measured in order to detect a potential inhibition. The total contents of polyphenols and flavonoid vary in function of TAMP and the mobile phase used for the extraction (distilled water or ethanol). The ethanolic extracts showed the most significant antiradical and antioxidant activities. Only the extracts from Coriandrum sativum showed a significant inhibiting effect on the α-amylase activity. This inhibiting capacity could be correlated with the chemical profile of the two extracts, due to the fact that they have the greatest amount of total flavonoid. The ethanolic extract has the most important antioxidant and anti-radicalizing activities among the sixteen extracts studied. The inhibition kinetics of the two coriander extracts were evaluated by pre-incubation method, using Lineweaver-Burk’s equation, obtained by linearization of Michaeilis-Menten’s expression. The results showed that both extracts exercised a competitive inhibition mechanism.Keywords: α-amylase, antioxidant activity, aromatic and medicinal plants, inhibition
Procedia PDF Downloads 4511685 In vitro Larvicidal Activity of Varying Concentrations of Madre De Cacao (Gliricidia sepium) Concentrated Crude Ethanolic Extract against Larvae of Horn Fly (Haematobia irritans)
Authors: Antonio B.Tangayan Jr., Hershey P. Mondejar, Pet Roey Pascual, Zeam Voltaire E. Amper
Abstract:
A study on in vitro larvicidal acitivity of different levels of Madre de Cacao (Gliricidia sepium) concentrated crude ethanolic extract (CCEE) against horn fly larvae (Haematobia irritans) was conducted. The air-dried leaves of Gliricidia sepium were infused in a 1:3 ratio (w/v) using ethanol as solvent and concentrated in a rotary evaporator (60°C). A total of 120 larvae of Haematobia irritans were exposed in various concentration: 200, 400, 800 and 1000 ppm. Based on the result after 5 hours of exposure, CCE G. sepium extract at 200 ppm showed less effect with 30% mortality compared to 400 ppm, 800 ppm and 1000 ppm with 70%, 83%, and 100% mortality, respectively. Findings also revealed that CCE of G. sepium extract at 1000 ppm, 800 ppm, and commercial larvicide were comparable in causing mortality of H. irritans larvae from the first hour up to the fifth hours of exposure. However, on the fifth hour, 400 ppm was also found to be effective. This suggests that the higher the concentration of CCE G. sepium extract and the longer the time of exposure, the higher is the percentage mortality of the larvae. Thus, CCE G. sepium extract can be used as an alternative for commercial larvicide.Keywords: horn fly, in vitro, larvicidal, Madre de Cacao
Procedia PDF Downloads 2871684 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 1071683 Enhancing Postharvest Quality and Shelf-Life of Leaf Lettuce (Lactuca sativa L.) by Altering Growing Conditions
Authors: Jung-Soo Lee, Ujjal Kumar Nath, IllSup Nou, Dulal Chandra
Abstract:
Leaf lettuce is one of the most important leafy vegetables that is used as raw for salad and part of everyday dishes in many parts of the world including Asian countries. Since it is used as fresh, its quality maintenance is crucial which depends on several pre- and postharvest factors. In order to investigate the effects of pre-fix factors on the postharvest quality, the interaction of pre-fix factors such as growing conditions and fixed factor like cultivars were evaluated. Four Korean leaf lettuce cultivars ‘Cheongchima’, ‘Cheongchuckmyeon’, ‘Geockchima’ and ‘Geockchuckmyeon’ were grown under natural condition (as control) and altered growing condition (green house) with excess soil water and 50% shading to monitor their postharvest qualities. Several growth parameters like plant height, number of leaves, leaf thickness, fresh biomass yield as well as postharvest qualities like fresh weight loss, respiration rate, changes in color and shelf-life were measured in lettuce during storage up to 36 days at 5°C. Plant height and the number of leaves were affected by both pre-fix growing conditions as well as the cultivars. However, fresh biomass yield was affected by only growing condition, whereas leaf thickness was affected by cultivars. Additionally, the degrees of fresh weight loss and respiration rate of leaf lettuce at postharvest stages were influenced by pre-fix growing conditions and cultivars. However, changes in color of leaves during storage were less remarkable in samples harvested from of ‘Cheongchima’ and ‘Cheongchuckmyeon’ cultivars grown in excess watering with 50% shade than that grown in control condition. Consequently, these two cultivars also showed longer shelf-life when they were grown in excess watering with 50% shade than other cultivars or samples were grown in control condition. Based on the measured parameters, it can be concluded that postharvest quality of leaf lettuce might be accelerated by growing lettuce under excess soil water with 50% shading.Keywords: cultivar, growing condition, leaf lettuce, postharvest quality, shelf-life
Procedia PDF Downloads 2621682 Bio Based Agro Textiles
Authors: K. Sakthivel
Abstract:
With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.Keywords: biodegradation, environment, mulching film, PLA, technical textiles
Procedia PDF Downloads 3861681 The Effectiveness of Herbal Capsules Ethanol Extract of Celery (Apium graveolens L.) and Bulb of Garlic (Allium sativum L.) in Lowering Total Cholesterol Levels in Patients with Hypercholesterolemia
Authors: Anton Bahtiar, Lukas Tjandra Leksana, Fransiscus D. Suyatna
Abstract:
Hypercholesterolemia is one of the major risk factors that can trigger the development of cardiovascular disease, especially coronary heart disease. One of the traditional drugs used for hypercholesterolemia is a combination of herbs celery (Apium graveolens) and garlic (Allium sativum). This study aimed to investigate the effects of the extract on lipid profile in hypercholesterolemic subjects. Subjects consisted of patients with traditional medicine clinic in Jakarta. Each subject received treatment capsules containing herbal extract and placebo capsules. On the 44 subjects, the lipid profile was examined blood levels of total cholesterol, HDL, LDL, and triglycerides. Paired two-tailed t-test was used for the difference between lipid profile of the therapy group and the placebo group. The changes in the lipid profile between the treatment groups and the placebo group for total cholesterol, HDL, LDL, and triglycerides was 14,82 ± 6,946;1.45 ± 2,945;6,98 ± 8,105;2,48 ± 6,504 mg/dL. The herbal extract decrease blood cholesterol and LDL levels significantly (P <0.05).Keywords: Allium sativum, Apium graveolens, hypercholesterolemia, cholesterol, HDL, LDL
Procedia PDF Downloads 3321680 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant
Authors: Maria Altamirano, Alfonso Duran
Abstract:
Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism
Procedia PDF Downloads 1911679 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays
Authors: N. Benahmed, A. Cheriti
Abstract:
Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.Keywords: medicinal plants, struvite, urolithiasis, zea mays
Procedia PDF Downloads 4501678 Insight into Localized Fertilizer Placement in Major Cereal Crops
Authors: Solomon Yokamo, Dianjun Lu, Xiaoqin Chen, Huoyan Wang
Abstract:
The current ‘high input-high output’ nutrient management model based on homogenous spreading over the entire soil surface remains a key challenge in China’s farming systems, leading to low fertilizer use efficiency and environmental pollution. Localized placement of fertilizer (LPF) to crop root zones has been proposed as a viable approach to boost crop production while protecting environmental pollution. To assess the potential benefits of LPF on three major crops—wheat, rice, and maize—a comprehensive meta-analysis was conducted, encompassing 85 field studies published from 2002-2023. We further validated the practicability and feasibility of one-time root zone N management based on LPF for the three field crops. The meta-analysis revealed that LPF significantly increased the yields of the selected crops (13.62%) and nitrogen recovery efficiency (REN) (33.09%) while reducing cumulative nitrous oxide (N₂O) emission (17.37%) and ammonia (NH₃) volatilization (60.14%) compared to the conventional surface application (CSA). Higher grain yield and REN were achieved with an optimal fertilization depth (FD) of 5-15 cm, moderate N rates, combined NPK application, one-time deep fertilization, and coarse-textured and slightly acidic soils. Field validation experiments showed that localized one-time root zone N management without topdressing increased maize (6.2%), rice (34.6%), and wheat (2.9%) yields while saving N fertilizer (3%) and also increased the net economic benefits (23.71%) compared to CSA. A soil incubation study further proved the potential of LPF to enhance the retention and availability of mineral N in the root zone over an extended period. Thus, LPF could be an important fertilizer management strategy and should be extended to other less-developed and developing regions to win the triple benefit of food security, environmental quality, and economic gains.Keywords: grain yield, LPF, NH₃ volatilization, N₂O emission, N recovery efficiency
Procedia PDF Downloads 201677 Wet Extraction of Lutein and Lipids from Microalga by Quantitative Determination of Polarity
Authors: Mengyue Gong, Xinyi Li, Amarjeet Bassi
Abstract:
Harvesting by-products while recovering biodiesel is considered a potentially valuable approach to increase the market feasibility of microalgae industry. Lutein is a possible by-product from microalgae that promotes eye health. The extraction efficiency and the expensive drying process of wet algae represent the major challenges for the utilization of microalgae biomass as a feedstock for lipids, proteins, and carotenoids. A wet extraction method was developed to extract lipids and lutein from microalga Chlorella vulgaris. To evaluate different solvent (mixtures) for the extraction, a quantitative analysis was established based on the polarity of solvents using Nile Red as the polarity (ETN) indicator. By the choice of binary solvent system then adding proper amount of water to achieve phase separation, lipids and lutein can be extracted simultaneously. Some other parameters for lipids and lutein production were also studied including saponification time, temperature, choice of alkali, and pre-treatment methods. The extraction efficiency with wet algae was compared with dried algae and shown better pigment recovery. The results indicated that the product pattern in each extracted phase was polarity dependent. Lutein and β-carotene were the main carotenoids extracted with ethanol while lipids come out with hexane.Keywords: biodiesel, Chlorella vulgaris, extraction, lutein
Procedia PDF Downloads 3421676 Inventory and Pollinating Role of Bees (Hymenoptera: apoidea) on Turnip (Brassica rapa L.) and Radish (Raphanus sativus L.) (Brassicaceae) in Constantine Area (Algeria)
Authors: Benachour Karima
Abstract:
Pollination is a key factor in crop production and the presence of insect pollinators, mainly wild bees, is essential for improving yields. In this work, visiting apoids of two vegetable crops, the turnip (Brassica rapa L.) and the radish (Raphanus sativus L.) (Brassicaceae) were recorded during flowering times of 2003 and 2004 in Constantine area (36°22’N 06°37’E, 660 m). The observations were conducted in a plot of approximately 308 m2 of the Institute of Nutrition, Food and Food Technology (University of Mentouri Brothers). To estimate the density of bees (per 100 flowers or m2), 07 plots (01m2 for each one) are defined from the edge of the culture and in the first two rows. From flowering and every two days, foraging insects are recorded from 09 am until 17 pm (Gmt+1).The purpose of visit (collecting nectar, pollen or both) and pollinating efficiency (estimated by the number of flowers visited per minute and the number of positive visits) were noted for the most abundant bees on flowers. The action of pollinating insects is measured by comparing seed yields of 07 plots covered with tulle with 07 other accessible to pollinators. 04 families of Apoidea: Apidae, Halictidae, Andrenidae and Megachilidae were observed on the two plants. On turnip, the honeybee is the most common visitor (on average 214visites/ m2), it is followed by the Halictidae Lasioglossum mediterraneum whose visits are less intense (20 individuals/m2). Visits by Andrenidae, represented by several species such as Andrena lagopus, A.flavipes, A.agilissima and A.rhypara were episodic. The honeybee collected mainly nectar, its visits were all potentially fertilizing (contact with stigma) and more frequent (on average 14 flowers/min. L.mediterraneum visited only 05 flrs/min, it collected mostly the two products together and all its visits were also positive. On radish, the wild bee Ceratina cucurbitina recorded the highest number of visits (on average 06 individuals/100flo wers), the Halictidae represented mainly by L.mediterraneum, and L.malachurum, L.pauxillum were less abundant. C.cucurbitina visited on average 10 flowers /min and all its visits are positive. Visits of Halictidae were less frequent (05-06 flowers/min) and not all fertilizing. Seed yield of Brassica rapa (average number of pods /plant, seeds/ pods and average weight of 1000 seeds) was significantly higher in the presence of pollinators. Similarly, the pods of caged plants gave a percentage of aborted seeds (10.3%) significantly higher than that obtained on free plants (4.12%), the pods of caged plants also gave a percentage of malformed seeds (1.9%) significantly higher than that of the free plants (0.9%). For radish, the seed yield in the presence and absence of insects are almost similar. Only the percentage of malformed seeds (3.8%) obtained from the pods of caged plants was significantly higher in comparison with pods of free plants (1.9%). Following these results, it is clear that pollinators especially bees are essential for the production and improvement of crop yields and therefore it is necessary to protect this fauna increasingly threatened.Keywords: foraging behavior, honey bee, radish, seed yield, turnip, wild bee
Procedia PDF Downloads 2151675 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost
Authors: Protima Chakraborty
Abstract:
The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability
Procedia PDF Downloads 2421674 Aerogel Fabrication Via Modified Rapid Supercritical Extraction (RSCE) Process - Needle Valve Pressure Release
Authors: Haibo Zhao, Thomas Andre, Katherine Avery, Alper Kiziltas, Deborah Mielewski
Abstract:
Silica aerogels were fabricated through a modified rapid supercritical extraction (RSCE) process. The silica aerogels were made using a tetramethyl orthosilicate precursor and then placed in a hot press and brought to the supercritical point of the solvent, ethanol. In order to control the pressure release without a pressure controller, a needle valve was used. The resulting aerogels were then characterized for their physical and chemical properties and compared to silica aerogels created using similar methods. The aerogels fabricated using this modified RSCE method were found to have similar properties to those in other papers using the unmodified RSCE method. Silica aerogel infused glass blanket composite, graphene reinforced silica aerogel composite were also successfully fabricated by this new method. The modified RSCE process and system is a prototype for better gas outflow control with a lower cost of equipment setup. Potentially, this process could be evolved to a continuous low-cost high-volume production process to meet automotive requirements.Keywords: aerogel, automotive, rapid supercritical extraction process, low cost production
Procedia PDF Downloads 1841673 Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum
Authors: H. M. Takematsu, B. R. De Camargo, E. F. Noronha
Abstract:
The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use.Keywords: sugarcane bagasse, Cerrado biome , hollocelulase, lignocellulosic biomass
Procedia PDF Downloads 2921672 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose
Authors: Jitlada Chumee, Drenpen Seeburin
Abstract:
The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).Keywords: pomelo peel, carboxymethyl cellulose, bioplastic, extraction
Procedia PDF Downloads 3181671 The Role of Moringa oleifera Extract Leaves in Inducing Apoptosis in Breast Cancer Cell Line
Authors: V. Yurina, H. Sujuti, E. Rahmani, A. R. Nopitasari
Abstract:
Breast cancer has the highest prevalence cancer in women. Moringa leaves (M. oleifera) contain quercetin, kaempferol, and benzyl isothiocyanate which can enhance induction of apoptosis. This research aimed to study the role of the leaf extract of Moringa to increase apoptosis in breast cancer cell line, MCF-7 cells. This research used in vitro experimental, post-test only, control group design on breast cancer cells MCF-7 in vitro. Moringa leaves were extracted by maceration method with ethanol 70%. Cells were treated with drumstick leaves extract on 1100, 2200, and 4400 μg/ml for Hsp27 and caspase-9 expression (immunocytochemistry) and apoptosis (TUNEL assay) test. The results of this study found that the IC50 2200 µg/ml. Moringa leaves extract can significantly increase the expression of caspase-9 (p<0.05) and decreased Hsp 27 expression (p<0.05). Moreover it can increase apoptosis (p<0.05) significantly in MCF-7 cells. The conclusion of this study is Moringa leaves extract is able to increase the expression of caspase-9, decrease Hsp27 expression and increase apoptosis in breast cancer cell-line MCF-7.Keywords: apoptosis, breast cancer, caspase-9, Hsp27, Moringa oleifera
Procedia PDF Downloads 5451670 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till
Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum
Abstract:
Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia
Procedia PDF Downloads 1481669 Algae for Wastewater Treatment and CO₂ Sequestration along with Recovery of Bio-Oil and Value Added Products
Authors: P. Kiran Kumar, S. Vijaya Krishna, Kavita Verma1, V. Himabindu
Abstract:
Concern about global warming and energy security has led to increased biomass utilization as an alternative feedstock to fossil fuels. Biomass is a promising feedstock since it is abundant and cheap and can be transformed into fuels and chemical products. Microalgae biofuels are likely to have a much lower impact on the environment. Microalgae cultivation using sewage with industrial flue gases is a promising concept for integrated biodiesel production, CO₂ sequestration, and nutrients recovery. Autotrophic, Mixotrophic, and Heterotrophic are the three modes of cultivation for microalgae biomass. Several mechanical and chemical processes are available for the extraction of lipids/oily components from microalgae biomass. In organic solvent extraction methods, a prior drying of biomass and recovery of the solvent is required, which are energy-intensive. Thus, the hydrothermal process overcomes the drawbacks of conventional solvent extraction methods. In the hydrothermal process, the biomass is converted into oily components by processing in a hot, pressurized water environment. In this process, in addition to the lipid fraction of microalgae, other value-added products such as proteins, carbohydrates, and nutrients can also be recovered. In the present study was (Scenedesmus quadricauda) was isolated and cultivated in autotrophic, heterotrophic, and mixotrophically using sewage wastewater and industrial flue gas in batch and continuous mode. The harvested algae biomass from S. quadricauda was used for the recovery of lipids and bio-oil. The lipids were extracted from the algal biomass using sonication as a cell disruption method followed by solvent (Hexane) extraction, and the lipid yield obtained was 8.3 wt% with Palmitic acid, Oleic acid, and Octadeonoic acid as fatty acids. The hydrothermal process was also carried out for extraction of bio-oil, and the yield obtained was 18wt%. The bio-oil compounds such as nitrogenous compounds, organic acids, and esters, phenolics, hydrocarbons, and alkanes were obtained by the hydrothermal process of algal biomass. Nutrients such as NO₃⁻ (68%) and PO₄⁻ (15%) were also recovered along with bio-oil in the hydrothermal process.Keywords: flue gas, hydrothermal process, microalgae, sewage wastewater, sonication
Procedia PDF Downloads 1411668 Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon
Authors: Musa Najimu, Isam Aljundi
Abstract:
In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation.Keywords: carbide derived carbon, mixed matrix membrane, CO₂ separation, polysulfone
Procedia PDF Downloads 2071667 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves
Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman
Abstract:
The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.Keywords: Ficus, ultrasounds, vitexin, isovitexin
Procedia PDF Downloads 4191666 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell
Authors: Afshin Farahbakhsh, Hoda Khodadadi
Abstract:
In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.Keywords: enzymatic electrode, fuel cell, immobilization, laccase
Procedia PDF Downloads 2621665 Conductometric Methanol Microsensor Based on Electrospun PVC-Nickel Phthalocyanine Composite Nanofiber Technology
Authors: Ibrahim Musa, Guy Raffin, Marie Hangouet, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid
Abstract:
Due to its application in different domains, such as fuel cell configuration and adulteration of alcoholic beverages, a miniaturized sensor for methanol detection is urgently required. A conductometric microsensor for measuring volatile organic compounds (VOC) was conceived, based on electrospun composite nanofibers of polyvinyl chloride (PVC) doped with nickel phthalocyanine(NiPc) deposited on interdigitated electrodes (IDEs) used transducers. The nanofiber's shape, structure, percent atomic content and thermal properties were studied using analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. The methanol sensor showed good sensitivity (505µS/cm(v/v) ⁻¹), low LOD (15 ppm), short response time (13 s), and short recovery time (15 s). The sensor was 4 times more sensitive to methanol than to ethanol and 19 times more sensitive to methanol than to acetone. Furthermore, the sensor response was unaffected by the interfering water vapor, making it more suitable for VOC sensing in the presence of humidity. The sensor was applied for conductometric detection of methanol in rubbing alcohol.Keywords: composite, methanol, conductometric sensor, electrospun, nanofiber, nickel phthalocyanine, PVC
Procedia PDF Downloads 251664 Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens
Authors: E. M. H. Maggie, M. N. A. Nazmey, M. A. Abdel-Sattar, S. A. Saied
Abstract:
A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases.Keywords: cotton, transplanting cotton, damping-off diseases, environment sciences
Procedia PDF Downloads 3681663 Evaluation of Methods for Simultaneous Extraction and Purification of Fungal and Bacterial DNA from Vaginal Swabs
Authors: Vanessa De Carvalho, Chad MacPherson, Julien Tremblay, Julie Champagne, Stephanie-Anne Girard
Abstract:
Background: The interactions between bacteria and fungi in the human vaginal microbiome are fundamental to the concept of health and disease. The means by which the microbiota and mycobiota interact is still poorly understood and further studies are necessary to properly characterize this complex ecosystem. The aim of this study was to select a DNA extraction method capable of recovering high qualities of fungal and bacterial DNA from a single vaginal swab. Methods: 11 female volunteers ( ≥ 20 to < 55 years old) self-collected vaginal swabs in triplicates. Three commercial extraction kits: Masterpure Yeast Purification kit (Epicenter), PureLink™ Microbiome DNA Purification kit (Invitrogen), and Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) were evaluated on the ability to recover fungal and bacterial DNA simultaneously. The extraction kits were compared on the basis of recovery, yield, purity, and the community richness of bacterial (16S rRNA - V3-V4 region) and fungal (ITS1) microbiota composition by Illumina MiSeq amplicon sequencing. Results: Recovery of bacterial DNA was achieved with all three kits while fungal DNA was only consistently recovered with Masterpure Yeast Purification kit (yield and purity). Overall, all kits displayed similar microbiota profiles for the top 20 OTUs; however, Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) showed more species richness than the other two kits. Conclusion: In the present study, Masterpure Yeast purification kit proved to be a good candidate for purification of high quality fungal and bacterial DNA simultaneously. These findings have potential benefits that could be applied in future vaginal microbiome research. Whilst the use of a single extraction method would lessen the burden of multiple swab sampling, decrease laboratory workload and off-set costs associated with multiple DNA extractions, thoughtful consideration must be taken when selecting an extraction kit depending on the desired downstream application.Keywords: bacterial vaginosis, DNA extraction, microbiota, mycobiota, vagina, vulvovaginal candidiasis, women’s health
Procedia PDF Downloads 2011662 Characterization Microstructural Dual Phase Steel for Application In Civil Engineering
Authors: S. Habibi, T. E. Guarcia, A. Megueni, A. Ziadi, L. Aminallah, A. S. Bouchikhi
Abstract:
The characterization of the microstructure of Dual Phase steel in various low-carbon, with a yield stress between 400 and 900 MPa were conducted .In order to assess the mechanical properties of steel, we examined the influence of their chemical compositions interictal and heat treatments (austenite + ferrite area) on their micro structures. In this work, we have taken a number of commercial DP steels, micro structurally characterized and used the conventional tensile testing of these steels for mechanical characterization.Keywords: characterization, construction in civil engineering, micro structure, tensile DP steel
Procedia PDF Downloads 4661661 A Safety-Door for Earthquake Disaster Prevention - Part II
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The safety of door has not given much attention. The main problem of doors during and after earthquake is that they are unable to be opened because deviation from its original position by the lateral load. The aim of this research is to develop and evaluate a safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. Nonlinear finite element analysis was conducted in order to evaluate the structural performance and behavior of the proposed door under both monotonic and cyclic loading.Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis
Procedia PDF Downloads 4731660 Maximizing Giant Prawn Resource Utilization in Banjar Regency, Indonesia: A CPUE and MSY Analysis
Authors: Ahmadi, Iriansyah, Raihana Yahman
Abstract:
The giant freshwater prawn (Macrobrachium rosenbergii de Man, 1879) is a valuable species for fisheries and aquaculture, especially in Southeast Asia, including Indonesia due to their high market demand and potential for export. The growing demand for prawns is straining the sustainability of the Banjar Regency fishery. To ensure the long-term sustainability and economic viability of the prawn fishing in this region, it is imperative to implement evidence-based management practices. This requires comprehensive data on the Catch per Unit Effort (CPUE), Maximum Sustainable Yield (MSY) and the current rate of prawn resource exploitation. it analyzed five years of prawn catch data (2019-2023) obtained from South Kalimantan Marine and Fisheries Services. Fishing gears (e.g. hook & line and cast net) were first standardized with Fishing Power Index, and then calculated effort and MSY. The intercept (a) and the slope (b) values of regression curve were used to estimate the catch-maximum sustainable yield (CMSY) and optimal fishing effort (Fopt) levels within the framework of the Surplus Production Model. The estimated rates of resource utilization were then compared to the criteria of The National Commission of Marine Fish Stock Assessment. The findings showed that the CPUE value peaked in 2019 at 33.48 kg/trip, while the lowest value observed in 2022 at 5.12 kg/trip. The CMSY value was estimated to be 17,396 kg/year, corresponding to the Fopt level of 1,636 trips/year. The highest utilization rate was 56.90% recorded in 2020, while the lowest rate was observed in 2021 at 46.16%. The annual utilization rates were classified as “medium”, suggesting that increasing fishing effort by 45% could potentially maximize prawn catches at an optimum level. These findings provide a baseline for sustainable fisheries management in the region.Keywords: giant prawns, CPUE, fishing power index, sustainable potential, utilization rate
Procedia PDF Downloads 181659 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Soil Properties of Rice
Authors: D. A. S. Gamage, B. F. A Basnayake, W. A. J. M. de Costa
Abstract:
Rice is one of the world’s most important cereals. Increasing food production both to meet in-country requirements and to help overcome food crises is one of the major issues facing Sri Lanka today. However, productive land is limited and has mostly been utilized either for food crop production or other uses. Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. A variety of modern agricultural inputs have been introduced, namely ploughs and harvesters, pesticides, fertilizers and lime. Besides, there are several agricultural institutions developing and updating the management of agricultural sector. Modern agricultural inputs cooperate as a catalyst in raising the productivity. However, in the eagerness of gaining profits from the efficient and productive techniques, this modern agricultural input has affected the environment and living things especially those which have been blended from various chemical substance. The increased pressure to maintain a high level of rice output for consumption has resulted in increased use of pesticides and inorganic fertilizer on rice fields in Sri Lanka. The application of inorganic fertilizer has become a burdened to the country in many ways. The excessive reuse of the ground water resources with a considerable application of organic and chemical fertilizers will lead to a deterioration of the quality and quantity of water. Biochar is a form of charcoal produced through the heating of natural organic materials. It has received significant attention recently for its potential as a soil conditioner, a fertilizer and as a means of storing carbon in a sustainable manner. It is the best solution for managing the agricultural wastes while providing a useful product for increasing agricultural productivity and protecting the environment. The objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N, P, K, organic matter in soil and yield of rice production.Keywords: biochar, paddy husk, soil conditioner, rice straw compost
Procedia PDF Downloads 3511658 Electrochemical Reduction of Carbon-dioxide Using Metal Nano-particles Supported on Nano-Materials
Authors: Mulatu Kassie Birhanu
Abstract:
Electrochemical reduction of CO₂ is an emerging and current issue for its conversion in to valuable product upon minimization of its atmospheric level for contribution of maintaining within the range of permissible limit. Among plenty of electro-catalysts gold and copper are efficient and effective catalysts, which are synthesized and applicable for this research work. The two metal catalysts were prepared in inert environment with different compositions through co-reduction process from their corresponding precursors and then by adding multi-walled carbon nano-tube as a supporter and enhanced the conductivity. The catalytic performance of CO₂ reduction for each composition was performed and resulted an outstanding catalytic activity with generation of high current density (70 mA/cm² at 0.91V vs. RHE) and relatively small onset potential. The catalytic performance, compositions, morphologies, structure and geometric arrangements were evaluated by electrochemical analysis (LSV, impedance, chronoamperometry & tafel plot), EDS, SEM and XAS respectively. The composite metals showed better selectivity of products and faradaic efficiencies due to the synergetic effects of the combined nano-particles in addition to the impact of grain size in reduction of CO₂. Carbon monoxide, hydrogen, formate and ethanol are the reduction products, which are detected and quantifiable by chromatographic techniques considering their physical state of each product.Keywords: carbondioxide, faradaic efficiency, electrocatalyst, current density
Procedia PDF Downloads 57