Search results for: data sensitivity
25301 Occult Haemolacria Paradigm in the Study of Tears
Authors: Yuliya Huseva
Abstract:
To investigate the contents of tears to determine latent blood. Methods: Tear samples from 72 women were studied with the microscopy of tears aspirated with a capillary and stained by Nocht and with a chemical method of test strips with chromogen. Statistical data processing was carried out using statistical packages Statistica 10.0 for Windows, calculation of Pearson's chi-square test, Yule association coefficient, the method of determining sensitivity and specificity. Results:, In 30.6% (22) of tear samples erythrocytes were revealed microscopically. Correlations between the presence of erythrocytes in the tear and the phase of the menstrual cycle has been discovered. In the follicular phase of the cycle, erythrocytes were found in 59.1% (13) people, which is significantly more (x2=4.2, p=0.041) compared to the luteal phase - in 40.9% (9) women. In the first seven days of the follicular phase of the menstrual cycle the erythrocytes were predominanted of in the tears of women examined testifies in favour of the vicarious bleeding from the mucous membranes of extragenital organs in sync with menstruation. Of the other cellular elements in tear samples with latent haemolacria, neutrophils prevailed - in 45.5% (10), while lymphocytes were less common - in 27.3% (6), because neutrophil exudation is accompanied by vasodilatation of the conjunctiva and the release of erythrocytes into the conjunctival cavity. It was found that the prognostic significance of the chemical method was 0.53 of the microscopic method. In contrast to microscopy, which detected blood in tear samples from 30.6% (22) of women, blood was detected chemically in tears of 16.7% (12). An association between latent haemolacria and endometriosis was found (k=0.75, p≤0.05). Microscopically, in the tears of patients with endometriosis, erythrocytes were detected in 70% of cases, while in healthy women without endometriosis - in 25% of cases. The proportion of women with erythrocytes in tears, determined by a chemical method, was 41.7% among patients with endometriosis, which is significantly more (x2=6.5, p=0.011) than 11.7% among women without endometriosis. The data obtained can be explained by the etiopathogenesis of the extragenital endometriosis which is caused by hematogenous spread of endometrial tissue into the orbit. In endometriosis, erythrocytes are found against the background of accumulations of epithelial cells. In the tear samples of 4 women with endometriosis, glandular cuboidal epithelial cells, morphologically similar to endometrial cells, were found, which may indicate a generalization of the disease. Conclusions: Single erythrocytes can normally be found in the tears, their number depends on the phase of the menstrual cycle, increasing in the follicular phase. Erythrocytes found in tears against the background of accumulations of epitheliocytes and their glandular atypia may indicate a manifestation of extragenital endometriosis. Both used methods (microscopic and chemical) are informative in revealing latent haemolacria. The microscopic method is more sensitive, reveals intact erythrocytes, and besides, it provides information about other cells. At the same time, the chemical method is faster and technically simpler, it determines the presence of haemoglobin and its metabolic products, and can be used as a screening.Keywords: tear, blood, microscopy, epitheliocytes
Procedia PDF Downloads 12025300 Empirical Acceleration Functions and Fuzzy Information
Authors: Muhammad Shafiq
Abstract:
In accelerated life testing approaches life time data is obtained under various conditions which are considered more severe than usual condition. Classical techniques are based on obtained precise measurements, and used to model variation among the observations. In fact, there are two types of uncertainty in data: variation among the observations and the fuzziness. Analysis techniques, which do not consider fuzziness and are only based on precise life time observations, lead to pseudo results. This study was aimed to examine the behavior of empirical acceleration functions using fuzzy lifetimes data. The results showed an increased fuzziness in the transformed life times as compare to the input data.Keywords: acceleration function, accelerated life testing, fuzzy number, non-precise data
Procedia PDF Downloads 29825299 Evaluating Alternative Structures for Prefix Trees
Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha
Abstract:
Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.Keywords: data structures, indexing, tree structure, trie, information retrieval
Procedia PDF Downloads 45225298 Data Management System for Environmental Remediation
Authors: Elizaveta Petelina, Anton Sizo
Abstract:
Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.Keywords: data management, environmental remediation, geographic information system, GIS, decision making
Procedia PDF Downloads 16125297 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data
Authors: Bharat Singh Om Prakash Vyas
Abstract:
Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.Keywords: ALS, NMF, high dimensional data, RMSE
Procedia PDF Downloads 34225296 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 12425295 Lossless Secret Image Sharing Based on Integer Discrete Cosine Transform
Authors: Li Li, Ahmed A. Abd El-Latif, Aya El-Fatyany, Mohamed Amin
Abstract:
This paper proposes a new secret image sharing method based on integer discrete cosine transform (IntDCT). It first transforms the original image into the frequency domain (DCT coefficients) using IntDCT, which are operated on each block with size 8*8. Then, it generates shares among each DCT coefficients in the same place of each block, that is, all the DC components are used to generate DC shares, the ith AC component in each block are utilized to generate ith AC shares, and so on. The DC and AC shares components with the same number are combined together to generate DCT shadows. Experimental results and analyses show that the proposed method can recover the original image lossless than those methods based on traditional DCT and is more sensitive to tiny change in both the coefficients and the content of the image.Keywords: secret image sharing, integer DCT, lossless recovery, sensitivity
Procedia PDF Downloads 39825294 Comparison of Proportional-Integral (P-I) and Integral-Propotional (I-P) Controllers for Speed Control in Vector Controlled Permanent Magnet Synchronous Motor Drive
Authors: V. Srikanth, K. Balasubramanian, Rajath R. Bhat, A. S. Arjun, Nandhu Venugopal, Ananthu Unnikrishnan
Abstract:
Indirect vector control is known to produce high performance in Permanent Magnet Synchronous Motor (PMSM) drives by decoupling flux and torque producing current components of stator current. The most commonly used controller or the vector control of AC motor is Proportional-Integral (P-I) controller. However, the P-I controller has some disadvantages such as high starting overshoot, sensitivity to controller gains and slower response to sudden disturbance. Therefore, the Integral-Proportional controller for PMSM drives to overcome the disadvantages of the P-I controller. Simulations results are presented and analyzed for both controllers and it is observed that Integral-Proportional (I-P) controllers give better responses than the traditional P-I controllers.Keywords: PMSM, FOC, PI controller, IP controller
Procedia PDF Downloads 36025293 Vortex Flows under Effects of Buoyant-Thermocapillary Convection
Authors: Malika Imoula, Rachid Saci, Renee Gatignol
Abstract:
A numerical investigation is carried out to analyze vortex flows in a free surface cylinder, driven by the independent rotation and differentially heated boundaries. As a basic uncontrolled isothermal flow, we consider configurations which exhibit steady axisymmetric toroidal type vortices which occur at the free surface; under given rates of the bottom disk uniform rotation and for selected aspect ratios of the enclosure. In the isothermal case, we show that sidewall differential rotation constitutes an effective kinematic means of flow control: the reverse flow regions may be suppressed under very weak co-rotation rates, while an enhancement of the vortex patterns is remarked under weak counter-rotation. However, in this latter case, high rates of counter-rotation reduce considerably the strength of the meridian flow and cause its confinement to a narrow layer on the bottom disk, while the remaining bulk flow is diffusion dominated and controlled by the sidewall rotation. The main control parameters in this case are the rotational Reynolds number, the cavity aspect ratio and the rotation rate ratio defined. Then, the study proceeded to consider the sensitivity of the vortex pattern, within the Boussinesq approximation, to a small temperature gradient set between the ambient fluid and an axial thin rod mounted on the cavity axis. Two additional parameters are introduced; namely, the Richardson number Ri and the Marangoni number Ma (or the thermocapillary Reynolds number). Results revealed that reducing the rod length induces the formation of on-axis bubbles instead of toroidal structures. Besides, the stagnation characteristics are significantly altered under the combined effects of buoyant-thermocapillary convection. Buoyancy, induced under sufficiently high Ri, was shown to predominate over the thermocapillay motion; causing the enhancement (suppression) of breakdown when the rod is warmer (cooler) than the ambient fluid. However, over small ranges of Ri, the sensitivity of the flow to surface tension gradients was clearly evidenced and results showed its full control over the occurrence and location of breakdown. In particular, detailed timewise evolution of the flow indicated that weak thermocapillary motion was sufficient to prevent the formation of toroidal patterns. These latter detach from the surface and undergo considerable size reduction while moving towards the bulk flow before vanishing. Further calculations revealed that the pattern reappears with increasing time as steady bubble type on the rod. However, in the absence of the central rod and also in the case of small rod length l, the flow evolved into steady state without any breakdown.Keywords: buoyancy, cylinder, surface tension, toroidal vortex
Procedia PDF Downloads 35925292 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement
Authors: Wang Lin, Li Zhiqiang
Abstract:
The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm
Procedia PDF Downloads 18725291 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 10825290 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow
Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun
Abstract:
With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.Keywords: cloud storage security, sharing storage, attributes, Hash algorithm
Procedia PDF Downloads 39025289 In the Primary Education, the Classroom Teacher's Procedure of Coping WITH Stress, the Health of Psyche and the Direction of Check Point
Authors: Caglayan Pinar Demirtas, Mustafa Koc
Abstract:
Objective: This study was carried out in order to find out; the methods which are used by primary school teachers to cope with stress, their psychological health, and the direction of controlling focus. The study was carried out by using the ‘school survey’ and ‘society survey’ methods. Method: The study included primary school teachers. The study group was made up of 1066 people; 511 women and 555 men who accepted volunteerly to complete; ‘the inventory for collecting data, ‘the Scale for Attitude of Overcoming Stress’ (SBTE / SAOS), ‘Rotter’s Scale for the Focus of Inner- Outer Control’ (RİDKOÖ / RSFIOC), and ‘the Symptom Checking List’ (SCL- 90). The data was collected by using ‘the Scale for Attitude of Overcoming Stress’, ‘the Scale for the Focus of Inner- Outer Control’, ‘the Symptom Checking List’, and a personal information form developed by the researcher. SPSS for Windows packet programme was used. Result: The age variable is a factor in interpersonal sensitivity, depression, anxciety, hostality symptoms but it is not a factor in the other symptoms. The variable, gender, is a factor in emotional practical escaping overcoming method but it is not a factor in the other overcoming methods. Namely, it has been found out that, women use emotional practical escaping overcoming method more than men. Marital status is a factor in methods of overcoming stress such as trusting in religion, emotional practical escaping and biochemical escaping while it is not a factor in the other methods. Namely, it has been found out that married teachers use trusting in religion method, and emotional practical escaping method more than single ones. Single teachers generally use biochemical escaping method. In primary school teachers’ direction of controlling focus, gender variable is a factor. It has been found out that women are more inner controlled while the men are more outer controlled. The variable, time of service, is a factor in the direction of controlling focus; that is, teachers with 1-5 years of service time are more inner controlled compared with teachers with 16-20 years of service time. The variable, age, is a factor in the direction of controlling focus; that is, teachers in 26-30 age groups are more outer controlled compared with the other age groups and again teachers in 26-30 age group are more inner controlled when compared with the other age groups. Direction of controlling focus is a factor in the primary school teachers’ psychological health. Namely, being outer controlled is a factor but being inner controlled is not. The methods; trusting in religion, active plannıng and biochemical escaping used by primary school teachers to cope with stress act as factors in the direction of controlling focus but not in the others. Namely, it has been found out that outer controlled teachers prefer the methods of trusting in religion and active planning while the inner controlled ones prefer biochemical escaping.Keywords: coping with, controlling focus, psychological health, stress
Procedia PDF Downloads 35125288 Investigating Early Markers of Alzheimer’s Disease Using a Combination of Cognitive Tests and MRI to Probe Changes in Hippocampal Anatomy and Functionality
Authors: Netasha Shaikh, Bryony Wood, Demitra Tsivos, Michael Knight, Risto Kauppinen, Elizabeth Coulthard
Abstract:
Background: Effective treatment of dementia will require early diagnosis, before significant brain damage has accumulated. Memory loss is an early symptom of Alzheimer’s disease (AD). The hippocampus, a brain area critical for memory, degenerates early in the course of AD. The hippocampus comprises several subfields. In contrast to healthy aging where CA3 and dentate gyrus are the hippocampal subfields with most prominent atrophy, in AD the CA1 and subiculum are thought to be affected early. Conventional clinical structural neuroimaging is not sufficiently sensitive to identify preferential atrophy in individual subfields. Here, we will explore the sensitivity of new magnetic resonance imaging (MRI) sequences designed to interrogate medial temporal regions as an early marker of Alzheimer’s. As it is likely a combination of tests may predict early Alzheimer’s disease (AD) better than any single test, we look at the potential efficacy of such imaging alone and in combination with standard and novel cognitive tasks of hippocampal dependent memory. Methods: 20 patients with mild cognitive impairment (MCI), 20 with mild-moderate AD and 20 age-matched healthy elderly controls (HC) are being recruited to undergo 3T MRI (with sequences designed to allow volumetric analysis of hippocampal subfields) and a battery of cognitive tasks (including Paired Associative Learning from CANTAB, Hopkins Verbal Learning Test and a novel hippocampal-dependent abstract word memory task). AD participants and healthy controls are being tested just once whereas patients with MCI will be tested twice a year apart. We will compare subfield size between groups and correlate subfield size with cognitive performance on our tasks. In the MCI group, we will explore the relationship between subfield volume, cognitive test performance and deterioration in clinical condition over a year. Results: Preliminary data (currently on 16 participants: 2 AD; 4 MCI; 9 HC) have revealed subfield size differences between subject groups. Patients with AD perform with less accuracy on tasks of hippocampal-dependent memory, and MCI patient performance and reaction times also differ from healthy controls. With further testing, we hope to delineate how subfield-specific atrophy corresponds with changes in cognitive function, and characterise how this progresses over the time course of the disease. Conclusion: Novel sequences on a MRI scanner such as those in route in clinical use can be used to delineate hippocampal subfields in patients with and without dementia. Preliminary data suggest that such subfield analysis, perhaps in combination with cognitive tasks, may be an early marker of AD.Keywords: Alzheimer's disease, dementia, memory, cognition, hippocampus
Procedia PDF Downloads 57325287 The Study on Life of Valves Evaluation Based on Tests Data
Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu
Abstract:
Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.Keywords: censored data, temperature tests, valves, vibration tests
Procedia PDF Downloads 34525286 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 30625285 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 28925284 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission
Procedia PDF Downloads 27825283 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery
Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley
Abstract:
Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter
Procedia PDF Downloads 47225282 Assessment of High Frequency Solidly Mounted Resonator as Viscosity Sensor
Authors: Vinita Choudhary
Abstract:
Solidly Acoustic Resonators (SMR) based on ZnO piezoelectric material operating at a frequency of 3.96 GHz and 6.49% coupling factor are used to characterize liquids with different viscosities. This behavior of the sensor is analyzed using Finite Element Modeling. Device architectures encapsulate bulk acoustic wave resonators with MO/SiO₂ Bragg mirror reflector and the silicon substrate. The proposed SMR is based on the mass loading effect response of the sensor to the change in the resonant frequency of the resonator that is caused by the increased density due to the absorption of liquids (water, acetone, olive oil) used in theoretical calculation. The sensitivity of sensors ranges from 0.238 MHz/mPa.s to 83.33 MHz/mPa.s, supported by the Kanazawa model. Obtained results are also compared with previous works on BAW viscosity sensors.Keywords: solidly mounted resonator, bragg mirror, kanazawa model, finite element model
Procedia PDF Downloads 8225281 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 14225280 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate
Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim
Abstract:
The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films
Procedia PDF Downloads 11725279 Facile Synthesis of CuO Nanosheets on Cu Foil for H2O2 Detection
Authors: Yu-Kuei Hsu, Yan-Gu Lin
Abstract:
A facile and simple fabrication of copper(II) oxide (CuO) nanosheet on copper foil as nanoelectrode for H2O2 sensing application was proposed in this study. The spontaneous formation of CuO nanosheets by immersing the copper foil into 0.1 M NaOH aqueous solution for 48 hrs was carried out at room temperature. The sheet-like morphology with several ten nanometers in thickness and ~500 nm in width was observed by SEM. Those nanosheets were confirmed the monoclinic-phase CuO by the structural analysis of XRD and Raman spectra. The directly grown CuO nanosheets film is mechanically stable and offers an excellent electrochemical sensing platform. The CuO nanosheets electrode shows excellent electrocatalytic response to H2O2 with significantly lower overpotentials for its oxidation and reduction and also exhibits a fast response and high sensitivity for the amperometric detection of H2O2. The novel spontaneously grown CuO nanosheets electrode is readily applicable to other analytes and has great potential applications in the electrochemical detection.Keywords: CuO, nanosheets, H2O2 detection, Cu foil
Procedia PDF Downloads 28925278 Clinical Relevance of TMPRSS2-ERG Fusion Marker for Prostate Cancer
Authors: Shalu Jain, Anju Bansal, Anup Kumar, Sunita Saxena
Abstract:
Objectives: The novel TMPRSS2:ERG gene fusion is a common somatic event in prostate cancer that in some studies is linked with a more aggressive disease phenotype. Thus, this study aims to determine whether clinical variables are associated with the presence of TMPRSS2:ERG-fusion gene transcript in Indian patients of prostate cancer. Methods: We evaluated the clinical variables with presence and absence of TMPRSS2:ERG gene fusion in prostate cancer and BPH association of clinical patients. Patients referred for prostate biopsy because of abnormal DRE or/and elevated sPSA were enrolled for this prospective clinical study. TMPRSS2:ERG mRNA copies in samples were quantified using a Taqman chemistry by real time PCR assay in prostate biopsy samples (N=42). The T2:ERG assay detects the gene fusion mRNA isoform TMPRSS2 exon1 to ERG exon4. Results: Histopathology report has confirmed 25 cases as prostate cancer adenocarcinoma (PCa) and 17 patients as benign prostate hyperplasia (BPH). Out of 25 PCa cases, 16 (64%) were T2: ERG fusion positive. All 17 BPH controls were fusion negative. The T2:ERG fusion transcript was exclusively specific for prostate cancer as no case of BPH was detected having T2:ERG fusion, showing 100% specificity. The positive predictive value of fusion marker for prostate cancer is thus 100% and the negative predictive value is 65.3%. The T2:ERG fusion marker is significantly associated with clinical variables like no. of positive cores in prostate biopsy, Gleason score, serum PSA, perineural invasion, perivascular invasion and periprostatic fat involvement. Conclusions: Prostate cancer is a heterogeneous disease that may be defined by molecular subtypes such as the TMPRSS2:ERG fusion. In the present prospective study, the T2:ERG quantitative assay demonstrated high specificity for predicting biopsy outcome; sensitivity was similar to the prevalence of T2:ERG gene fusions in prostate tumors. These data suggest that further improvement in diagnostic accuracy could be achieved using a nomogram that combines T2:ERG with other markers and risk factors for prostate cancer.Keywords: prostate cancer, genetic rearrangement, TMPRSS2:ERG fusion, clinical variables
Procedia PDF Downloads 44425277 Multiracial Experiences of Microaggressions in Counseling: Implications for Culturally Competent Practice
Authors: C. Peeper McDonald
Abstract:
Despite the multiracial population growing exponentially in the world and especially in the U.S., there continues to be a lack of culturally responsive research addressing the unique experiences and needs of this population, especially within counseling and counselor education settings. It is evident that their unique racial microaggressive experiences need to be better understood within the field of professional counseling to not only underscore competent training and practice but also culturally responsive training and practice. The participants of this study were 13 (n=13) individuals from the United States who identified as multiracial and said they had a microaggressive experience with either their counselor or counseling professor. Data were gathered through one-on-one, semi-structured interviews. The analysis employed phenomenological methods based on the transcendental approach, resulting in themes that encapsulated the core of the participants' experiences, including multiracial microaggressions that are derogatory and perpetuate privilege/oppression; counselors and their training programs should embody safety, support, attentiveness, inter-personal sensitivity, and awareness of the impact on others; microaggressions negatively affect the counseling relationship and outcomes; awareness surrounding the emotional impact of microaggressions; strength-based responses and future responses to microaggressions; and advocacy and suggestions for counselors and counselor educators. These themes are discussed in detail, and recommendations for researchers, counselor educators, and professional counselors to improve training and practice are provided. This U.S. study's insights into the Multiracial experience of microaggressions within the mental health profession can inform global mental health practices by highlighting the need for culturally responsive counseling that recognizes and addresses racial nuances. Such knowledge is transferable to international settings where multiracial populations may also encounter similar challenges, aiding in the development of global standards for culturally competent counseling practices.Keywords: culturally responsive training and practice, mental health, microaggressions, multiracial
Procedia PDF Downloads 5025276 Chief Financial Officer Compensation in Mergers and Acquisitions Activities
Authors: Martin Bugeja, Helen Spiropolos
Abstract:
Using a sample of U.S. firms during the period 1993-2015, this study examines whether mergers and acquisitions (M&A) impact the compensation of the Chief Financial Officer (CFO) in the bidding and integration phases of M&As. The study finds that after controlling for CEO power, CFOs’ total compensation is higher during M&A years and is driven by higher equity incentives. These results are robust to controlling for self-selection. Furthermore, CFOs receive a greater bonus during the year of acquisition and the year prior. The study also investigates if CFO compensation during M&A years is driven by M&A characteristics and finds that deal size and diversification are positively related to total compensation while completion time is negatively related. The results are robust to a number of sensitivity tests and additional analyses.Keywords: chief financial officer, compensation, mergers, acquisitions
Procedia PDF Downloads 5925275 An Automated Approach to Consolidate Galileo System Availability
Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt
Abstract:
Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.Keywords: availability, data quality, system performance, Galileo, aerospace
Procedia PDF Downloads 16725274 Use of In-line Data Analytics and Empirical Model for Early Fault Detection
Authors: Hyun-Woo Cho
Abstract:
Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.Keywords: batch process, monitoring, measurement, kernel method
Procedia PDF Downloads 32325273 The Impact of the General Data Protection Regulation on Human Resources Management in Schools
Authors: Alexandra Aslanidou
Abstract:
The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.Keywords: general data protection regulation, human resource management, educational system
Procedia PDF Downloads 10025272 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 157