Search results for: canteen waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2733

Search results for: canteen waste

1503 Hybrid Recovery of Copper and Silver from Photovoltaic Ribbon and Ag finger of End-Of-Life Solar Panels

Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa

Abstract:

Recovery of pure copper and silver from end-of-life photovoltaic panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500°C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from photovoltaic ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.

Keywords: electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel

Procedia PDF Downloads 133
1502 Implementation of Lean Tools (Value Stream Mapping and ECRS) in an Oil Refinery

Authors: Ronita Singh, Yaman Pattanaik, Soham Lalwala

Abstract:

In today’s highly competitive business environment, every organization is striving towards lean manufacturing systems to achieve lower Production Lead Times, lower costs, less inventory and overall improvement in supply chains efficiency. Based on the similar idea, this paper presents the practical application of Value Stream Mapping (VSM) tool and ECRS (Eliminate, Combine, Reduce, and Simplify) technique in the receipt section of the material management center of an oil refinery. A value stream is an assortment of all actions (value added as well as non-value added) that are required to bring a product through the essential flows, starting with raw material and ending with the customer. For drawing current state value stream mapping, all relevant data of the receipt cycle has been collected and analyzed. Then analysis of current state map has been done for determining the type and quantum of waste at every stage which helped in ascertaining as to how far the warehouse is from the concept of lean manufacturing. From the results achieved by current VSM, it was observed that the two processes- Preparation of GRN (Goods Receipt Number) and Preparation of UD (Usage Decision) are both bottle neck operations and have higher cycle time. This root cause analysis of various types of waste helped in designing a strategy for step-wise implementation of lean tools. The future state thus created a lean flow of materials at the warehouse center, reducing the lead time of the receipt cycle from 11 days to 7 days and increasing overall efficiency by 27.27%.

Keywords: current VSM, ECRS, future VSM, receipt cycle, supply chain, VSM

Procedia PDF Downloads 313
1501 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 171
1500 Green Organic Chemistry, a New Paradigm in Pharmaceutical Sciences

Authors: Pesaru Vigneshwar Reddy, Parvathaneni Pavan

Abstract:

Green organic chemistry which is the latest and one of the most researched topics now-a- days has been in demand since 1990’s. Majority of the research in green organic chemistry chemicals are some of the important starting materials for greater number of major chemical industries. The production of organic chemicals has raw materials (or) reagents for other application is major sector of manufacturing polymers, pharmaceuticals, pesticides, paints, artificial fibers, food additives etc. organic synthesis on a large scale compound to the labratory scale, involves the use of energy, basic chemical ingredients from the petro chemical sectors, catalyst and after the end of the reaction, seperation, purification, storage, packing distribution etc. During these processes there are many problems of health and safety for workers in addition to the environmental problems caused there by use and deposition as waste. Green chemistry with its 12 principles would like to see changes in conventional way that were used for decades to make synthetic organic chemical and the use of less toxic starting materials. Green chemistry would like to increase the efficiency of synthetic methods, to use less toxic solvents, reduce the stage of synthetic routes and minimize waste as far as practically possible. In this way, organic synthesis will be part of the effort for sustainable development Green chemistry is also interested for research and alternatives innovations on many practical aspects of organic synthesis in the university and research labaratory of institutions. By changing the methodologies of organic synthesis, health and safety will be advanced in the small scale laboratory level but also will be extended to the industrial large scale production a process through new techniques. The three key developments in green chemistry include the use of super critical carbondioxide as green solvent, aqueous hydrogen peroxide as an oxidising agent and use of hydrogen in asymmetric synthesis. It also focuses on replacing traditional methods of heating with that of modern methods of heating like microwaves traditions, so that carbon foot print should reduces as far as possible. Another beneficiary of this green chemistry is that it will reduce environmental pollution through the use of less toxic reagents, minimizing of waste and more bio-degradable biproducts. In this present paper some of the basic principles, approaches, and early achievements of green chemistry has a branch of chemistry that studies the laws of passing of chemical reactions is also considered, with the summarization of green chemistry principles. A discussion about E-factor, old and new synthesis of ibuprofen, microwave techniques, and some of the recent advancements also considered.

Keywords: energy, e-factor, carbon foot print, micro-wave, sono-chemistry, advancement

Procedia PDF Downloads 304
1499 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements

Authors: Marcela Ondova, Adriana Estokova

Abstract:

Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.

Keywords: life cycle assessment, fly ash, waste, concrete pavements

Procedia PDF Downloads 402
1498 Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Manomita Mollick, Gartzen Lopez, Martin Olazar

Abstract:

The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented.

Keywords: non thermal plasma, plasma catalysis, steam reforming, syngas, plastic waste, green energy

Procedia PDF Downloads 65
1497 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 67
1496 Exploring Paper Mill Sludge and Sugarcane Bagasse as Carrier Matrix in Solid State Fermentation for Carotenoid Pigment Production by Planococcus sp. TRC1

Authors: Subhasree Majumdar, Sovan Dey, Sayari Mukherjee, Sourav Dutta, Dalia Dasgupta Mandal

Abstract:

Bacterial isolates from Planococcus genus are known for the production of yellowish orange pigment that belongs to the carotenoid family. These pigments are of immense pharmacological importance as antioxidant, anticancer, eye and liver protective agent, etc. The production of this pigment in a cost effective manner is a challenging task. The present study explored paper mill sludge (PMS), a solid lignocellulosic waste generated in large quantities from pulp and paper mill industry as a substrate for carotenoid pigment production by Planococcus sp. TRC1. PMS was compared in terms of efficacy with sugarcane bagasse, which is a highly explored substrate for valuable product generation via solid state fermentation. The results showed that both the biomasses yielded the highest carotenoid during 48 hours of incubation, 31.6 mg/gm and 42.1 mg/gm for PMS and bagasse respectively. Compositional alterations of both the biomasses showed reduction in lignin, hemicellulose and cellulose content by 41%, 15%, 1% for PMS and 38%, 25% and 6% for sugarcane bagasse after 72 hours of incubation. Structural changes in the biomasses were examined by FT-IR, FESEM, and XRD which further confirmed modification of solid biomasses by bacterial isolate. This study revealed the potential of PMS to act as cheap substrate for carotenoid pigment production by Planococcus sp. TRC1, as it showed a significant production in comparison to sugarcane bagasse which gave only 1.3 fold higher production than PMS. Delignification of PMS by TRC1 during pigment production is another important finding for the reuse of this waste from the paper industry.

Keywords: carotenoid, lignocellulosic, paper mill sludge, Planococcus sp. TRC1, solid state fermentation, sugarcane bagasse

Procedia PDF Downloads 233
1495 Isolation and Selection of Strains Perspective for Sewage Sludge Processing

Authors: A. Zh. Aupova, A. Ulankyzy, A. Sarsenova, A. Kussayin, Sh. Turarbek, N. Moldagulova, A. Kurmanbayev

Abstract:

One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing.

Keywords: sewage sludge, composting, bacteria, enzymatic activity

Procedia PDF Downloads 100
1494 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 288
1493 Separate Collection System of Recyclables and Biowaste Treatment and Utilization in Metropolitan Area Finland

Authors: Petri Kouvo, Aino Kainulainen, Kimmo Koivunen

Abstract:

Separate collection system for recyclable wastes in the Helsinki region was ranked second best of European capitals. The collection system includes paper, cardboard, glass, metals and biowaste. Residual waste is collected and used in energy production. The collection system excluding paper is managed by the Helsinki Region Environmental Services HSY, a public organization owned by four municipalities (Helsinki, Espoo, Kauniainen and Vantaa). Paper collection is handled by the producer responsibility scheme. The efficiency of the collection system in the Helsinki region relies on a good coverage of door-to-door-collection. All properties with 10 or more dwelling units are required to source separate biowaste and cardboard. This covers about 75% of the population of the area. The obligation is extended to glass and metal in properties with 20 or more dwelling units. Other success factors include public awareness campaigns and a fee system that encourages recycling. As a result of waste management regulations for source separation of recyclables and biowaste, nearly 50 percent of recycling rate of household waste has been reached. For households and small and medium size enterprises, there is a sorting station fleet of five stations available. More than 50 percent of wastes received at sorting stations is utilized as material. The separate collection of plastic packaging in Finland will begin in 2016 within the producer responsibility scheme. HSY started supplementing the national bring point system with door-to-door-collection and pilot operations will begin in spring 2016. The result of plastic packages pilot project has been encouraging. Until the end of 2016, over 3500 apartment buildings have been joined the piloting, and more than 1800 tons of plastic packages have been collected separately. In the summer 2015 a novel partial flow digestion process combining digestion and tunnel composting was adopted for source separated household and commercial biowaste management. The product gas form digestion process is converted in to heat and electricity in piston engine and organic Rankine cycle process with very high overall efficiency. This paper describes the efficient collection system and discusses key success factors as well as main obstacles and lessons learned as well as the partial flow process for biowaste management.

Keywords: biowaste, HSY, MSW, plastic packages, recycling, separate collection

Procedia PDF Downloads 217
1492 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 93
1491 Estimating Heavy Metal Leakage and Environmental Damage from Cigarette Butt Disposal in Urban Areas through CBPI Evaluation

Authors: Muhammad Faisal, Zai-Jin You, Muhammad Naeem

Abstract:

Concerns about the environment, public health, and the economy are raised by the fact that the world produces around 6 trillion cigarettes annually. Arguably the most pervasive forms of environmental litter, this dangerous trash must be eliminated. The researchers wanted to get an idea of how much pollution is seeping out of cigarette butts in metropolitan areas by studying their distribution and concentration. In order to accomplish this goal, the cigarette butt pollution indicator was applied in 29 different areas. The locations were monitored monthly for a full calendar year. The conditions for conducting the investigation of the venues were the same on both weekends and during the weekdays. By averaging the metal leakage ratio in various climates and the average weight of cigarette butts, we were able to estimate the total amount of heavy metal leakage. The findings revealed that the annual average value of the index for the areas that were investigated ranged from 1.38 to 10.4. According to these numbers, just 27.5% of the areas had a low pollution rating, while 43.5% had a major pollution status or worse. Weekends witnessed the largest fall (31% on average) in all locations' indices, while spring and summer saw the largest increase (26% on average) compared to autumn and winter. It was calculated that the average amount of heavy metals such as Cr, Cu, Cd, Zn, and Pb that seep into the environment from discarded cigarette butts in commercial, residential, and park areas, respectively, is 0.25 µg/m2, 0.078 µg/m2, and 0.18 µg/m2. Butt from cigarettes is one of the most prevalent forms of litter in the area that was examined. This litter is the origin of a wide variety of contaminants, including heavy metals. This toxic garbage poses a significant risk to the city.

Keywords: heavy metal, hazardous waste, waste management, litter

Procedia PDF Downloads 80
1490 Promotion of Healthy Food Choices in School Children through Nutrition Education

Authors: Vinti Davar

Abstract:

Introduction: Childhood overweight increases the risk for certain medical and psychological conditions. Millions of school-age children worldwide are affected by serious yet easily treatable and preventable illnesses that inhibit their ability to learn. Healthier children stay in school longer, attend more regularly, learn more and become healthier and more productive adults. Schools are an important setting for nutrition education because one can reach most children, teachers and parents. These years offer a key window for shaping their lifetime habits, which have an impact on their health throughout life. Against this background, an attempt was made to impart nutrition education to school children in Haryana state of India to promote healthy food choices and assess the effectiveness of this program. Methodology: This study was completed in two phases. During the first phase, pre-intervention anthropometric and dietary survey was conducted; the teaching materials for nutrition intervention program were developed and tested; and the questionnaire was validated. In the second phase, an intervention was implemented in two schools of Kurukshetra, Haryana for six months by personal visits once a week. A total of 350 children in the age group of 6-12 years were selected. Out of these, 279 children, 153 boys and 126 girls completed the study. The subjects were divided into four groups namely: underweight, normal, overweight and obese based on body mass index-for-age categories. A power point colorful presentation to improve the quality of tiffin, snacks and meals emphasizing inclusion of all food groups especially vegetables every day and fruits at least 3-4 days per week was used. An extra 20 minutes of aerobic exercise daily was likewise organized and a healthy school environment created. Provision of clean drinking water by school authorities was ensured. Selling of soft drinks and energy-dense snacks in the school canteen as well as advertisements about soft drink and snacks on the school walls were banned. Post intervention, anthropometric indices and food selections were reassessed. Results: The results of this study reiterate the critical role of nutrition education and promotion in improving the healthier food choices by school children. It was observed that normal, overweight and obese children participating in nutrition education intervention program significantly (p≤0.05) increased their daily seasonal fruit and vegetable consumption. Fat and oil consumption was significantly reduced by overweight and obese subjects. Fast food intake was controlled by obese children. The nutrition knowledge of school children significantly improved (p≤0.05) from pre to post intervention. A highly significant increase (p≤0.00) was noted in the nutrition attitude score after intervention in all four groups. Conclusion: This study has shown that a well-planned nutrition education program could improve nutrition knowledge and promote positive changes in healthy food choices. A nutrition program inculcates wholesome eating and active life style habits in children and adolescents that could not only prevent them from chronic diseases and early death but also reduce healthcare cost and enhance the quality of life of citizens and thereby nations.

Keywords: children, eating habits healthy food, obesity, school going, fast foods

Procedia PDF Downloads 203
1489 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water

Authors: Feleke Terefe Fanta

Abstract:

Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.

Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER

Procedia PDF Downloads 69
1488 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.

Procedia PDF Downloads 296
1487 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 90
1486 Beneficiation of Pulp and Paper Mill Sludge for the Generation of Single Cell Protein for Fish Farming

Authors: Lucretia Ramnath

Abstract:

Fishmeal is extensively used for fish farming but is an expensive fish feed ingredient. A cheaper alternate to fishmeal is single cell protein (SCP) which can be cultivated on fermentable sugars recovered from organic waste streams such as pulp and paper mill sludge (PPMS). PPMS has a high cellulose content, thus is suitable for glucose recovery through enzymatic hydrolysis but is hampered by lignin and ash. To render PPMS amenable for enzymatic hydrolysis, the PPMS waspre-treated to produce a glucose-rich hydrolysate which served as a feed stock for the production of fungal SCP. The PPMS used in this study had the following composition: 72.77% carbohydrates, 8.6% lignin, and 18.63% ash. The pre-treatments had no significant effect on lignin composition but had a substantial effect on carbohydrate and ash content. Enzymatic hydrolysis of screened PPMS was previously optimized through response surface methodology (RSM) and 2-factorial design. The optimized protocol resulted in a hydrolysate containing 46.1 g/L of glucose, of which 86% was recovered after downstream processing by passing through a 100-mesh sieve (38 µm pore size). Vogel’s medium supplemented with 10 g/L hydrolysate successfully supported the growth of Fusarium venenatum, conducted using standard growth conditions; pH 6, 200 rpm, 2.88 g/L ammonium phosphate, 25°C. A maximum F. venenatum biomass of 45 g/L was produced with a yield coefficient of 4.67. Pulp and paper mill sludge hydrolysate contained approximately five times more glucose than what was needed for SCP production and served as a suitable carbon source. We have shown that PPMS can be successfully beneficiated for SCP production.

Keywords: pulp and paper waste, fungi, single cell protein, hydrolysate

Procedia PDF Downloads 205
1485 The Impact of Liquid Glass-Infused Lignin Waste Particles on Performance of Polyurethane Foam for Building Industry

Authors: Agnė Kairyte, Saulius Vaitkus

Abstract:

The gradual depletion of fossil feedstock and growing environmental concerns attracted extensive attention to natural resources due to their low cost, high abundance, renewability, sustainability, and biodegradability. Lignin is a significant by-product of the pulp and paper industry, having unique functional groups. Recently it became interesting for the manufacturing of high value-added products such as polyurethane and polyisocyanurate foams. This study focuses on the development of high-performance polyurethane foams with various amounts of lignin as a filler. It is determined that the incorporation of lignin as a filler material results in brittle and hard products due to the low molecular mobility of isocyanates and the inherent stiffness of lignin. Therefore, the current study analyses new techniques and possibilities of liquid glass infusion onto the surface of lignin particles to reduce the negative aspects and improve the performance characteristics of the modified foams. The foams modified with sole lignin and liquid glass-infused lignin had an apparent density ranging from 35 kg/m3 to 45 kg/m3 and closed-cell content (80–90%). The incorporation of sole lignin reduced the compressive and tensile strengths and increased dimensional stability and water absorption, while the contrary results were observed for polyurethane foams with liquid glass-infused lignin particles. The effect on rheological parameters of lignin and liquid glass infused lignin modified polyurethane premixes and morphology of polyurethane foam products were monitored to optimize the conditions and reveal the significant influence of the interaction between particles and polymer matrix.

Keywords: filler, lignin waste, liquid glass, polymer matrix, polyurethane foam, sustainability

Procedia PDF Downloads 211
1484 Use of Non-woven Polyethylene Terephthalate Fabrics to Improve Certain Properties of Concrete

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Plastic packages have been broadly used for a long time. Such widespread usage of plastic has resulted in an increased amount of plastic wastes and many environmental impacts. Plastic wastes are one of the most significant types of waste materials because of their non-degradation and low biodegradability. It is why many researchers tried to find a safe and environmentally friendly solution for plastic wastes. In this goal, in the civil engineering industry, many types of plastic wastes have been incorporated, as a partial substitution of aggregates or as additive materials (fibers) in concrete mixtures because of their lengthier lifetime and lower weight. This work aims to study the mechanical properties (compressive, split tensile and flexural strengths) of concrete with a water-cement ratio (w/c) of 0.45 and with the incorporation of non-woven PET plastic sheets. Five configurations -without PET (reference), 1-layer sheet, 2-side, 3-side, and full sample wrapping- were applied. The 7, 14 and 28-days samples’ compressive strengths, flexural strength and split tensile strength were measured. The outcomes of the study show that the compressive strength was improved for the wrapped samples, particularly for the cylindrical specimens. Also, split tensile and flexural behaviors of the wrapped samples improved significantly compared to the reference ones. Moreover, reference samples were damaged into many parts after mechanical testing, while wrapped specimens were taken by the applied configurations and were not divided into many small fragments. Therefore, non-woven fabrics appeared to improve some properties of the concrete.

Keywords: solid waste plastic, non-woven polyethylene terephthalate sheets, mechanical behaviors, crack pattern

Procedia PDF Downloads 127
1483 Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats

Authors: Nkutere Chikezie Kanu, Nnamdi M. Anigbogu, Johnson C. Ezike

Abstract:

The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest.

Keywords: reciprocal, torula yeast, Zymomonas mobilis, organic waste

Procedia PDF Downloads 294
1482 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 290
1481 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: concrete, sludge waste, hypo sludge, supplementary cementitious material

Procedia PDF Downloads 306
1480 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment

Authors: Michael Radwan Omary

Abstract:

Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.

Keywords: catalysis, bio electro interactions, water desalination, weak-interactions

Procedia PDF Downloads 66
1479 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies

Authors: Dhivya Arumugam, Kaliyappan Thananjeyan

Abstract:

The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.

Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate

Procedia PDF Downloads 123
1478 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream

Authors: Piotr Kunecki, Magdalena Wdowin

Abstract:

The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.

Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream

Procedia PDF Downloads 83
1477 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished

Authors: Larbi Belagraa

Abstract:

The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.

Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength

Procedia PDF Downloads 172
1476 Ecotoxicity Evaluation Methodology for Metallurgical and Steel Wastes

Authors: G. Pelozo, N. Quaranta

Abstract:

The assessment of environmental hazard and ecotoxicological potential of industrial wastes has become an issue of concern in many countries. Therefore, the aim of this work is to develop a methodology, adapting an Argentinian standard, which allows analyze the ecotoxicological effect of various metallurgical and steel wastes. Foundry sand, white mud, red mud, electric arc furnace dust, converter slag, among others, are the studied wastes. The species used to analyze the ecotoxicological effects of wastes is rye grass (Lolium Perenne). The choice of this kind lies, among other things, in its easy and rapid germination making it possible to develop the test in a few days. Moreover, since the processes involved are general for most seeds, the obtained results with this kind are representative, in general, of the effects on seeds or seedlings. Since the studied residues are solids, prior to performing the assay, an eluate is obtained by stirring for 2 hours and subsequent filtration of a solution of waste in water in a relationship of 1:4. This represents 100% of eluate from which two dilutions in water (25% and 50%) are prepared. A sample with untreated solid waste and water is also performed. The test is performed by placing two filter papers in a Petri dish that are saturated with 3.5ml of the prepared dilutions. After that 20 rye grass seeds are placed, and the Petri dishes are covered and the seeds are incubated for 120 hours at 24 °C. Reference controls are carried out by distilled water. Three replicates are performed for each concentration. Once the exposure period is finished, inhibiting elongation of the root is measured (IR). The results of this test show that all the studied wastes produce an unfavorable effect on the development of the seedlings, being the electric arc furnace dust which more affects the germination.

Keywords: ecotoxicity, industrial wastes, environmental hazard, seeds

Procedia PDF Downloads 402
1475 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas

Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad

Abstract:

A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.

Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture

Procedia PDF Downloads 396
1474 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System

Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel

Abstract:

Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.

Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics

Procedia PDF Downloads 257