Search results for: air traffic flow
4563 The Contribution of the Lomé Charter to Combating Trafficking in Persons at Sea: Nigerian and South African Legal Perspective
Authors: Obinna Emmanuel Nkomadu
Abstract:
A major maritime problem in the African continent is the widespread proliferation of threats to maritime security, and one of which is the traffic in persons (TIP) at sea, which victims are sometimes assaulted, injured, killed, and in many cases go missing. The South African and Nigerian law on TIP at sea is the Prevention and Combating of Trafficking in Persons Act and the Trafficking in Persons (Prohibition) Enforcement and Administration Act, respectively. These legislation prohibits TIP at sea but does not provides effective and efficient national coordination structures and international cooperation measures against traffickers who engage on human trafficking on the African maritime domain. As a result of the limitations on the maritime security laws of most African States and the maritime security threats on the continent, the African Union in 2016 adopted the African Charter on Maritime Security and Safety and Development in Africa (Lome Charter). The Lomé Charter provides mechanisms for national and international cooperation on maritime security threats, including TIP at sea. However, the Charter is yet to come into force due to the number of States required to accede or ratify the Charter. This paper identifies gaps on existing instruments on TIP at sea by those States and justify on South Africa and Nigeria should adopt the Charter. The justification flow from analysing relevant international law instruments, as well as legislation on human trafficking.Keywords: cooperation against trafficking in persons at sea, lomé charter, maritime security, Nigerian legislation on trafficking in persons, South African legislation on trafficking in person, and trafficking in persons at sea
Procedia PDF Downloads 1514562 Ridership Study for the Proposed Installation of Automatic Guide-way Transit (AGT) System along Sapphire Street in Balanga City, Bataan
Authors: Nelson Andres, Meeko C. Masangcap, John Denver D. Catapang
Abstract:
Balanga City as, the heart of Bataan, is a growing City and is now at its fast pace of development. The growth of commerce in the city results to an increase in commuters who travel back and forth through the city, leading to congestions. Consequently, queuing of vehicles along national roads and even in the highways of the city have become a regular occurrence. This common scenario of commuters flocking the city, private and public vehicles going bumper to bumper, especially during the rush hours, greatly affect the flow of traffic vehicles and is now a burden not only to the commuters but also to the government who is trying to address this dilemma. Seeing these terrible events, the implementation of an elevated Automated Guide-way transit is seen as a possible solution to help in the decongestion of the affected parts of Balanga City.In response to the problem, the researchers identify if it is feasible to have an elevated guide-way transit in the vicinity of Sapphire Street in Balanga City, Bataan. Specifically, the study aims to determine who will be the riders based on the demographic profile, where the trip can be generated and distributed, the time when volume of people usually peaks and the estimated volume of passengers. Statistical analysis is applied to the data gathered to find out if there is an important relationship between the demographic profile of the respondents and their preference of having an elevated railway transit in the City of Balanga.Keywords: ridership, AGT, railway, elevated track
Procedia PDF Downloads 824561 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)
Authors: Salvatore Luongo, Carlo Luongo
Abstract:
This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilitiesKeywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification
Procedia PDF Downloads 2854560 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 1614559 Public Transport Analysis and Introducing of Bus Rapid Transit (BRT) System in Kabul City
Authors: Ramin Mirzada
Abstract:
This research investigates the valuation of public transport importance in decreasing congestion and in introduction of bus rapid transit in Kabul city. The main concern and main problem of the Kabul city public transport is traffic congestion. When buses and trams are stuck in traffic jams, it is clear that they fall behind from the schedule and this cause lots of problem for Kabul residence. In this research, the main attention has been given to improve current public transport in Kabul city which Public transport has large share almost 50% share among all mode. The main purpose of this research is to improve public transport system, to examine the demand and the supply of public transport in Kabul city, and to improve public transport system by introducing Bus rapid transit (BRT) system in Kabul city. The data which is used in this research is gathered by Transport Ministry, Kabul Municipality and Japan Cooperation Agency in Afghanistan (JICA). Urban transportation modeling system (UTMS) which is also known as traditional four-step modeling is used as the methodology of this research. The outcome of this research shows that by improving public transport which is local bus system mostly congestion problem of Kabul city become solve, and for those lanes which has the high demand and has more congestion, it is needed to introduce bus rapid transit system.Keywords: transportation, planning, public transport, bus rapid transit, Kabul, Afghanistan
Procedia PDF Downloads 4874558 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium
Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing
Abstract:
Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture
Procedia PDF Downloads 2404557 Cascade Control for Pressure Calibration by Fieldbus Communication System
Authors: Chatchaval Pornpatkul, Wipawan Suksathid
Abstract:
This paper is to study and control the pressure of the water inside the open tank using a cascade control with the communication in the process by fieldbus system for the pressure calibration. The plant model is to be used in experiments to control the level and flow process of the water by using Syscon program to create functions. We used to control by Intouch runtime program to create the graphic display on the screen. In this case we used PI control the level and the flow process of water in the open tank in the range of 0 – 10 L/m. The output signal of the level and the flow transmitter are the digital standard signal by fieldbus system. And all information displayed on the computer with the communication between the computer and plant model can be communication to each other through just one cable pair. And in this paper, the PI tuning, we used calculate by Ziegler-Nichols reaction curve method to control the plant model by PI controller.Keywords: cascade control, fieldbus system, pressure calibration, microelectronics systems
Procedia PDF Downloads 4594556 A Study on Accident Result Contribution of Individual Major Variables Using Multi-Body System of Accident Reconstruction Program
Authors: Donghun Jeong, Somyoung Shin, Yeoil Yun
Abstract:
A large-scale traffic accident refers to an accident in which more than three people die or more than thirty people are dead or injured. In order to prevent a large-scale traffic accident from causing a big loss of lives or establish effective improvement measures, it is important to analyze accident situations in-depth and understand the effects of major accident variables on an accident. This study aims to analyze the contribution of individual accident variables to accident results, based on the accurate reconstruction of traffic accidents using PC-Crash’s Multi-Body, which is an accident reconstruction program, and simulation of each scenario. Multi-Body system of PC-Crash accident reconstruction program is used for multi-body accident reconstruction that shows motions in diverse directions that were not approached previously. MB System is to design and reproduce a form of body, which shows realistic motions, using several bodies. Targeting the 'freight truck cargo drop accident around the Changwon Tunnel' that happened in November 2017, this study conducted a simulation of the freight truck cargo drop accident and analyzed the contribution of individual accident majors. Then on the basis of the driving speed, cargo load, and stacking method, six scenarios were devised. The simulation analysis result displayed that the freight car was driven at a speed of 118km/h(speed limit: 70km/h) right before the accident, carried 196 oil containers with a weight of 7,880kg (maximum load: 4,600kg) and was not fully equipped with anchoring equipment that could prevent a drop of cargo. The vehicle speed, cargo load, and cargo anchoring equipment were major accident variables, and the accident contribution analysis results of individual variables are as follows. When the freight car only obeyed the speed limit, the scattering distance of oil containers decreased by 15%, and the number of dropped oil containers decreased by 39%. When the freight car only obeyed the cargo load, the scattering distance of oil containers decreased by 5%, and the number of dropped oil containers decreased by 34%. When the freight car obeyed both the speed limit and cargo load, the scattering distance of oil containers fell by 38%, and the number of dropped oil containers fell by 64%. The analysis result of each scenario revealed that the overspeed and excessive cargo load of the freight car contributed to the dispersion of accident damage; in the case of a truck, which did not allow a fall of cargo, there was a different type of accident when driven too fast and carrying excessive cargo load, and when the freight car obeyed the speed limit and cargo load, there was the lowest possibility of causing an accident.Keywords: accident reconstruction, large-scale traffic accident, PC-Crash, MB system
Procedia PDF Downloads 2004555 Metaphors Investigation between President Xi Jinping of China and Trump of Us on the Corpus-Based Approach
Authors: Jie Zheng, Ruifeng Luo
Abstract:
The United States is the world’s most developed economy with the strongest military power. China is the fastest growing country with growing comprehensive strength and its economic strength is second only to the US. However, the conflict between them is getting serious in recent years. President’s address is the representative of a nation’s ideology. The paper has built up a small sized corpus of President Xi Jinping and Trump’s speech in Davos to investigate their respective use and types of metaphors and calculate the respective percentage of each type of metaphor. The result shows President Xi Jinping employs more metaphors than Trump. The metaphors of Xi includes “building” metaphor, “plant” metaphor, “journey” metaphor, “ship” metaphor, “traffic” metaphor, “nation is a person” metaphor, “show” metaphor, etc while Trump’s comprises “war” metaphor, “building” metaphor, “journey” metaphor, “traffic” metaphor, “tax” metaphor, “book” metaphor, etc. After investigating metaphor use differences, the paper makes an analysis of the underlying ideology between the two nations. China is willing to strengthen ties with all the countries all over the world and has built a platform of development for them and itself to go to the destination of social well being while the US pays much concern to itself, emphasizing its first leading position and is also willing to help its alliances to development. The paper’s comparison of the ideology difference between the two countries will help them get a better understanding and reduce the conflict to some extent.Keywords: metaphor; corpus; ideology; conflict
Procedia PDF Downloads 1474554 Topography Effects on Wind Turbines Wake Flow
Authors: H. Daaou Nedjari, O. Guerri, M. Saighi
Abstract:
A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography
Procedia PDF Downloads 5634553 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads
Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon
Abstract:
The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads
Procedia PDF Downloads 2704552 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller
Authors: Y. Galerkin, E. Popova, K. Soldatova
Abstract:
There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio π*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.Keywords: supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock
Procedia PDF Downloads 4674551 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions
Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei
Abstract:
This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics
Procedia PDF Downloads 844550 In-Depth Investigations on the Sequences of Accidents of Powered Two Wheelers Based on Police Crash Reports of Medan, North Sumatera Province Indonesia, Using Decision Aiding Processes
Authors: Bangun F., Crevits B., Bellet T., Banet A., Boy G. A., Katili I.
Abstract:
This paper seeks the incoherencies in cognitive process during an accident of Powered Two Wheelers (PTW) by understanding the factual sequences of events and causal relations for each case of accident. The principle of this approach is undertaking in-depth investigations on case per case of PTW accidents based on elaborate data acquisitions on accident sites that officially stamped in Police Crash Report (PCRs) 2012 of Medan with criteria, involved at least one PTW and resulted in serious injury and fatalities. The analysis takes into account four modules: accident chronologies, perpetrator, and victims, injury surveillance, vehicles and road infrastructures, comprising of traffic facilities, road geometry, road alignments and weather. The proposal for improvement could have provided a favorable influence on the chain of functional processes and events leading to collision. Decision Aiding Processes (DAP) assists in structuring different entities at different decisional levels, as each of these entities has its own objectives and constraints. The entities (A) are classified into 6 groups of accidents: solo PTW accidents; PTW vs. PTW; PTW vs. pedestrian; PTW vs. motor-trishaw; and PTW vs. other vehicles and consecutive crashes. The entities are also distinguished into 4 decisional levels: level of road users and street systems; operational level (crash-attended police officers or CAPO and road engineers), tactical level (Regional Traffic Police, Department of Transportation, and Department of Public Work), and strategic level (Traffic Police Headquarters (TCPHI)), parliament, Ministry of Transportation and Ministry of Public Work). These classifications will lead to conceptualization of Problem Situations (P) and Problem Formulations (I) in DAP context. The DAP concerns the sequences process of the incidents until the time the accident occurs, which can be modelled in terms of five activities of procedural rationality: identification on initial human features (IHF), investigation on proponents attributes (PrAT), on Injury Surveillance (IS), on the interaction between IHF and PrAt and IS (intercorrelation), then unravel the sequences of incidents; filtering and disclosure, which include: what needs to activate, modify or change or remove, what is new and what is priority. These can relate to the activation or modification or new establishment of law. The PrAt encompasses the problems of environmental, road infrastructure, road and traffic facilities, and road geometry. The evaluation model (MP) is generated to bridge P and I since MP is produced by the intercorrelations among IHF, PrAT and IS extracted from the PCRs 2012 of Medan. There are 7 findings of incoherences: lack of knowledge and awareness on the traffic regulations and the risks of accidents, especially when riding between 0 < x < 10 km from house, riding between 22 p.m.–05.30 a.m.; lack of engagements on procurement of IHF Data by CAPO; lack of competency of CAPO on data procurement in accident-sites; no intercorrelation among IHF and PrAt and IS in the database systems of PCRs; lack of maintenance and supervision on the availabilities and the capacities of traffic facilities and road infrastructure; instrumental bias with wash-back impacts towards the TCPHI; technical robustness with wash-back impacts towards the CAPO and TCPHI.Keywords: decision aiding processes, evaluation model, PTW accidents, police crash reports
Procedia PDF Downloads 1584549 Road Accidents to School Children’s in Dar Es Salaam, Tanzania
Authors: Kabuga Daniel
Abstract:
Road accidents resulting to deaths and injuries have become a new public health challenge especially in developing countries including Tanzania. Reports from Tanzania Traffic Police Force shows that last year 2016 accidents increased compare to previous year 2015, accident happened from 3710 up to 5219, accidents and safety data indicate that children are the most vulnerable to road crashes where 78 pupils died and 182 others were seriously injured in separate roads accident last year. A survey done by Amend indicates that Pupil mode of transport in Dar es salaam schools are by walk 87%, bus 9.21%, car 1.32%, motorcycle 0.88%, 3-wheeler 0.24%, train 0.14%, bicycle 0.10%, ferry 0.07%, and combined mode 0.44%. According to this study, majority of school children’s uses walking mode, most of school children’s agreed to continue using walking mode and request to have signs for traffic control during crossing road like STOP sign and CHILD CROSSING sign for safe crossing. Because children not only sit inside this buses (Daladala) but also they walk in a group to/from school, and few (33.2%) parents or adults are willing to supervise their children’s during working to school while 50% of parents agree to let their children walking alone to school if the public transport started from nearby street. The study used both qualitative and quantitative methods of research by conducting physical surveying on sample districts. The main objectives of this research are to carries out all factors affecting school children’s when they use public road, to promote and encourage the safe use of public road by all classes especially pupil or student through the circulation of advice, information and knowledge gain from research and to recommends future direction for the developments for road design or plan to vulnerable users. The research also critically analyze the problems causing death and injuries to school children’s in Dar es Salaam Region. This study determines the relationship between road traffic accidents and factors, such as socio-economic, status, and distance from school, number of sibling, behavioral problems, knowledge and attitudes of public and their parents towards road safety and parent educational study traffic. The study comes up with some of recommendations including Infrastructure Improvements like, safe footpaths, Safe crossings, Speed humps, Speed limits, Road signs. However, Planners and policymakers wishing to increase walking and cycling among children need to consider options that address distance constraints, the land use planners and transport professionals use better understanding of the various factors that affect children’s choices of school travel mode, results suggest that all school travel attributes should be considered during school location.Keywords: accidents, childrens, school, Tanzania
Procedia PDF Downloads 2434548 Analysis of User Complaints and Preferences by Conducting User Surveys to Ascertain the Need for Change in Current Design of Helmets
Authors: Pratham Baheti, Rohan Sanghi, Aditya Gupta
Abstract:
In the largely populated city of New Delhi, India, there are a lot of people that travel by two-wheelers. Majority of the people wear helmets while traveling and know how important it is to wear helmets for their safety. Still, the number of deaths because of road accidents involving two-wheelers is significant. We had conducted a survey by traveling within and in the outskirts of Delhi so as to see the variation in data and in the opinion of people towards helmet being a safety device rather than to escape the traffic police. We conducted a survey at traffic junctions and crossings of all the stakeholders and collected feedback on the Helmet scenario in India. According to the survey, the possible reason for these deaths is that the people, being unaware of helmet safety standards (ISI standards for helmets), buy helmets with fake ISI mark from unauthorized helmet sellers for a cheap price. Also, for the people who do not wear a helmet at all or wear a helmet just because it is a law, the reasons that they do not want to wear a helmet is heavyweight, lack of ventilation, inconvenience due to a strap, and hair problems. To address all these problems, we are designing a helmet with reduced weight and also working on the Helmet’s retention system and ventilation. We plan to provide this product at a cheap cost whilst maintaining the ISI standards so that a larger section of the population would be able to afford the helmet.Keywords: safety, survey, ISI marks, stakeholders, helmet
Procedia PDF Downloads 2794547 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo
Abstract:
The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: automated equipment, management, multi-beam sensor, pothole
Procedia PDF Downloads 2244546 Urban Freight Station: An Innovative Approach to Urban Freight
Authors: Amit Kumar Jain, Surbhi Jain
Abstract:
The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.Keywords: congestion, urban freight, intelligent transport system, pollution
Procedia PDF Downloads 3034545 RANS Simulation of the LNG Ship Squat in Shallow Water
Authors: Mehdi Nakisa, Adi Maimun, Yasser M. Ahmed, Fatemeh Behrouzi
Abstract:
Squat is the reduction in under-keel clearance between a vessel at-rest and underway due to the increased flow of water past the moving body. The forward motion of the ship induces a relative velocity between the ship and the surrounding water that causes a water level depression in which the ship sinks. The problem of ship squat is one among the crucial factors affecting the navigation of ships in restricted waters. This article investigates the LNG ship squat, its effects on flow streamlines around the ship hull and ship behavior and motion using computational fluid dynamics which is applied by Ansys-Fluent.Keywords: ship squat, CFD, confined, mechanic
Procedia PDF Downloads 6204544 Study on the Effect of Coupling Fluid Compressible-Deformable Wall on the Flow of Molten Polymers
Authors: Mohamed Driouich, Kamal Gueraoui, Mohamed Sammouda
Abstract:
The main objective of this work is to establish a numerical code for studying the flow of molten polymers in deformable pipes. Using an iterative numerical method based on finite differences, we determine the profiles of the fluid velocity, the temperature and the apparent viscosity of the fluid. The numerical code presented can also be applied to other industrial applications.Keywords: numerical code, molten polymers, deformable pipes, finite differences
Procedia PDF Downloads 5744543 Simulation of Red Blood Cells in Complex Micro-Tubes
Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi
Abstract:
In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics
Procedia PDF Downloads 1744542 A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface
Authors: Abdusalam Sharf
Abstract:
In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results.Keywords: computational fluid dynamics (CFD), SST k−ω shear-stress transport (k−ω mode variant), RNG k–ε renormalisation group (k−ε mode variant), y+ dimensionless distance from wall
Procedia PDF Downloads 3774541 A Numerical Investigation of Total Temperature Probes Measurement Performance
Authors: Erdem Meriç
Abstract:
Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes
Procedia PDF Downloads 1344540 Aerodynamic Bicycle Torque Augmentation with a Wells Turbine in Wheels
Authors: Tsuyoshi Yamazaki, Etsuo Morishita
Abstract:
Cyclists often run through a crosswind and sometimes we experience the adverse pressure. We came to an idea that Wells turbine can be used as power augmentation device in the crosswind something like sails of a yacht. Wells turbine always rotates in the same direction irrespective of the incoming flow direction, and we use it in the small-scale power generation in the ocean where waves create an oscillating flow. We incorporate the turbine to the wheel of a bike. A commercial device integrates strain gauges in the crank of a bike and transmitted force and torque applied to the pedal of the bike as an e-mail to the driver’s mobile phone. We can analyze the unsteady data in a spreadsheet sent from the crank sensor. We run the bike with the crank sensor on the rollers at the exit of a low-speed wind tunnel and analyze the effect of the crosswind to the wheel with a Wells turbine. We also test the aerodynamic characteristics of the turbine separately. Although power gain depends on the flow direction, several Watts increase might be possible by the Wells turbine incorporated to a bike wheel.Keywords: aerodynamics, Wells turbine, bicycle, wind engineering
Procedia PDF Downloads 1804539 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1704538 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation
Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi
Abstract:
The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation
Procedia PDF Downloads 5074537 Analysis of Waterjet Propulsion System for an Amphibious Vehicle
Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian
Abstract:
This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion
Procedia PDF Downloads 2284536 The Effect of Flow Discharge on Suspended Solids Transport in the Nakhon-Nayok River
Authors: Apichote Urantinon
Abstract:
Suspended solid is one factor for water quality in open channel. It affects various problems in waterways that could cause high sedimentation in the channels, leading to shallowness in the river. It is composed of the organic and inorganic materials which can settle down anywhere along the open channel. Thus, depends on the solid amount and its composition, it occupies the water body capacity and causes the water quality problems simultaneously. However, the existing of suspended solid in the water column depends on the flow discharge (Q) and secchi depth (sec). This study aims to examine the effect of flow discharge (Q) and secchi depth (sec) on the suspended solids concentration in open channel and attempts to establish the formula that represents the relationship between flow discharges (Q), secchi depth (sec) and suspended solid concentration. The field samplings have been conducted in the Nakhon-Nayok river, during the wet season, September 15-16, 2014 and dry season, March 10-11, 2015. The samplings with five different locations are measured. The discharge has been measured onsite by floating technics, the secchi depth has been measured by secchi disc and the water samples have been collected at the center of the water column. They have been analyzed in the laboratory for the suspended solids concentration. The results demonstrate that the decrease in suspended solids concentration is dependent on flow discharge, since the natural processes in erosion consists of routing of eroded material. Finally, an empirical equation to compute the suspended solids concentration that shows an equation (SScon = 9.852 (sec)-0.759 Q0.0355) is developed. The calculated suspended solids concentration, with uses of empirical formula, show good agreement with the record data as the R2 = 0.831. Therefore, the empirical formula in this study is clearly verified.Keywords: suspended solids concentration, the Nakhon-Nayok river, secchi depth, floating technics
Procedia PDF Downloads 2484535 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm
Authors: S. Neelima, P. S. Subramanyam
Abstract:
A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction
Procedia PDF Downloads 3914534 Investigation the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery
Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.Keywords: CFD, simulation, OpenFOAM, heart
Procedia PDF Downloads 149