Search results for: active mass damper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6824

Search results for: active mass damper

5594 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 161
5593 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 283
5592 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution

Authors: Jie Ren, Siyao Guo

Abstract:

Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.

Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid

Procedia PDF Downloads 110
5591 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 199
5590 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 292
5589 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation

Authors: P. D. Pastuszak

Abstract:

The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.

Keywords: active thermography, composite, curved structures, defects

Procedia PDF Downloads 312
5588 In situ Growth of ZIF-8 on TEMPO-Oxidized Cellulose Nanofibril Film and Coated with Pectin for pH and Enzyme Dual-Responsive Controlled Release Active Packaging

Authors: Tiantian Min, Chuanxiang Cheng, Jin Yue

Abstract:

The growth and reproduction of microorganisms in food packaging can cause food decay and foodborne diseases, which pose a serious threat to the health of consumers and even cause serious economic losses. Active food packaging containing antibacterial bioactive compounds is a promising strategy for extending the shelf life of products and maintaining the food quality, as well as reducing the food waste. However, most active packaging can only act as slow-release effect for antimicrobials, which causes the release rate of antimicrobials not match the growth rate of microorganisms. Stimuli-responsive active packaging materials based on biopolymeric substrates and bioactive substances that respond to some biological and non-biological trigger factors provide more opportunities for fresh food preservation. The biological stimuli factors such as relative humidity, pH and enzyme existed in the exudate secreted by microorganisms have been expected to design food packaging materials. These stimuli-responsive materials achieved accurate release or delivery of bioactive substances at specific time and appropriate dose. Recently, metal-organic-frameworks (MOFs) nanoparticles become attractive carriers to enhance the efficiency of bioactive compounds or drugs. Cellulose nanofibrils have been widely applied for film substrates due to their biodegradability and biocompatibility. The abundant hydroxyl groups in cellulose can be oxidized to carboxyl groups by TEMPO, making it easier to anchoring MOFs and to be further modification. In this study, a pH and enzyme dual-responsive CAR@ZIF-8/TOCNF/PE film was fabricated by in-situ growth of ZIF-8 nanoparticles onto TEMPO-oxidized cellulose (TOCNF) film and further coated with pectin (PE) for stabilization and controlled release of carvacrol (CAR). The enzyme triggered release of CAR was achieved owing to the degradation of pectin by pectinase secreted by microorganisms. Similarly, the pH-responsive release of CAR was attributed to the unique skeleton degradation of ZIF-8, further accelerating the release of CAR from the topological structure of ZIF-8. The composite film performed excellent crystallinity and adsorb ability confirmed by X-ray diffraction and BET analysis, and the inhibition efficiency against Escherichia coli, Staphylococcus aureus and Aspergillus niger reached more than 99%. The composite film was capable of releasing CAR when exposure to dose-dependent enzyme (0.1, 0.2, and 0.3 mg/mL) and acidic condition (pH = 5). When inoculated 10 μL of Aspergillus niger spore suspension on the equatorial position of mango and raspberries, this composite film acted as packaging pads effectively inhibited the mycelial growth and prolonged the shelf life of mango and raspberries to 7 days. Such MOF-TOCNF based film provided a targeted, controlled and sustained release of bioactive compounds for long-term antibacterial activity and preservation effect, which can also avoid the cross-contamination of fruits.

Keywords: active food packaging, controlled release, fruit preservation, in-situ growth, stimuli-responsive

Procedia PDF Downloads 53
5587 Impact of Gases Derived from Sargassum Algae Biodegradation on Copper Atmospheric Corrosion

Authors: M. Said Ahmed, M. Lebrini, J. Pellé, S. Rioual, B. Lescop, C. Roos

Abstract:

The corrosion behavior of copper exposed in a marine atmosphere polluted and unpolluted by gases, mainly hydrogen sulphide (H2S), from the decomposition of Sargassum algae was studied using the mass loss method and electrochemical measurements. MEB/EDX and XRD were also used for the observation of morphology and surface analysis. To study the impact of this on copper corrosion, four sites more or less impacted by Sargassum algae strandings were selected. The samples were exposed for up to six months. The mass loss results showed that the average corrosion rate of copper was 528 µm/year for the site most affected by Sargassum algae and 9.4 µm/year for the least impacted site after three months of exposure, implying that the presence of Sargassum algae caused an important copper degradation. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of Sargassum algae, we obtained mainly Cu2O and Cu2Cl(OH)3. Whereas in the atmosphere with Sargassum algae, CuS product is the main corrosion product obtained. Electrochemical analyses showed that the protection offered by the corrosion product layer was more important and improved with time for the non-impacted sites, whereas on the impacted sites, this protection deteriorated.

Keywords: atmospheric-corrosion, sargassum algae, copper, electrochemical techniques, SEM/EDX and XRD

Procedia PDF Downloads 107
5586 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 60
5585 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin

Abstract:

Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.

Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability

Procedia PDF Downloads 431
5584 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions

Procedia PDF Downloads 430
5583 Consumption of Animal and Vegetable Protein on Muscle Power in Road Cyclists from 18 to 20 Years in Bogota, Colombia

Authors: Oscar Rubiano, Oscar Ortiz, Natalia Morales, Lida Alfonso, Johana Alvarado, Adriana Gutierrez, Daniel Botero

Abstract:

Athletes who usually use protein supplements, are those who practice strength and power sports, whose goal is to achieve a large muscle mass. However, it has also been explored in sports or endurance activities such as cycling, and where despite requiring high power, prominent muscle development can impede good competitive performance due to the determinant of body mass for good performance of the athlete body. This research shows, the effect with protein supplements establishes a protein - muscle mass ratio, although in a lesser proportion the relationship between protein types and muscle power. Thus, we intend to explore as a first approximation, the behavior of muscle power in lower limbs after the intake of two protein supplements from different sources. The aim of the study was to describe the behavior of muscle power in lower limbs after the consumption of animal protein (AP) and vegetable protein (VP) in four route cyclists from 18 to 20 years of the Bogota cycling league. The methodological design of this study is quantitative, with a non-probabilistic sampling, based on a pre-experimental model. The jumping power was evaluated before and after the intervention by means of the squat jump test (SJ), Counter movement jump (CMJ) and Abalacov (AB). Cyclists consumed a drink with whey protein and a soy isolate after training four times a week for three months. The amount of protein in each cyclist, was calculated according to body weight (0.5 g / kg of muscle mass). The results show that subjects who consumed PV improved muscle strength and landing strength. In contrast, the power and landing force decreased for subjects who consumed PA. For the group that consumed PV, the increase was positive at 164.26 watts, 135.70 watts and 33.96 watts for the AB, SJ and CMJ jumps respectively. While for PA, the differences of the medians were negative at -32.29 watts, -82.79 watts and -143.86 watts for the AB, SJ and CMJ jumps respectively. The differences of the medians in the AB jump were positive for both the PV (121.61 Newton) and PA (454.34 Newton) cases, however, the difference was greater for PA. For the SJ jump, the difference for the PA cases was 371.52 Newton, while for the PV cases the difference was negative -448.56 Newton, so the difference was greater in the SJ jump for PA. In jump CMJ, the differences of the medians were negative for the cases of PA and PV, being -7.05 for PA and - 958.2 for PV. So the difference was greater for PA. The conclusion of this study shows that serum protein supplementation showed no improvement in muscle power in the lower limbs of the cyclists studied, which could suggest that whey protein does not have a beneficial effect on performance in terms of power, either, showed an impact on body composition. In contrast, supplementation with soy isolate showed positive effects on muscle power, body.

Keywords: animal protein (AP), muscle power, supplements, vegetable protein (VP)

Procedia PDF Downloads 169
5582 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell

Authors: Afshin Farahbakhsh, Hoda Khodadadi

Abstract:

In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.

Keywords: enzymatic electrode, fuel cell, immobilization, laccase

Procedia PDF Downloads 249
5581 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids

Authors: Zharama M. Llarena

Abstract:

Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.

Keywords: chlorogenic acid, coleus aromaticus, ionic liquid, rosmarinic acid

Procedia PDF Downloads 299
5580 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis

Authors: Farzad Khajavi

Abstract:

Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.

Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction

Procedia PDF Downloads 196
5579 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study

Authors: Fahri Benli, Sitalakshmi Venkartraman, Ye Wei, Fiona Wahr

Abstract:

A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modelling as a case study.

Keywords: experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes

Procedia PDF Downloads 176
5578 Impact of Hormone Replacement Therapy on Body Composition Analysis of Women during Perimenopause: A Framework for Action

Authors: Varsha Chorsiya, Pooja Aneja, Dhananjay Kaushik, Abhinav Yadav

Abstract:

Intoduction: Women’s Health Initiatives (WHI) focuses on defining the risks and benefits of strategies that could potentially reduce the incidence of obesity, heart disease, breast cancer and colorectal cancer, and fractures in menopause women. The utility of the present research work determines to find the role of Hormone Replacement Therapy (HRT) in changing the different component of body composition during perimenopause period. Methods: A comparative cross-sectional study included 30 subjects, aged between 40 and 50 years which were assigned into 2 groups i.e. 15 subjects in HRT (Group A) and 15 subjects in non-HRT (Group B). The subjects were taken from the hospitals and clinics of Faridabad undergoing HRT in supervision of the consultant gynecologist. The informed consents were signed before including the participants in the study. The body composition and lipid profile were evaluated for all the subjects. Result and Discussion: The BMI, body density, percent body fats and fat mass in both groups showed statistically significant differences i.e. p < 0.05. Our study did not reveal any statistically significant difference between non-HRT and HRT for lipid profile composition of HDL, LDL, VLDL, ratio, triglycerides and total cholesterol although these indicators (LDL, VLDL, ratio, triglycerides and total cholesterol) showed difference clinically with a higher mean values for non-HRT as compared to HRT group. The mean value for HDL was higher for HRT group in contrast to non-HRT group. The result clearly showed that HRT group has a good lipid profile composition. Conclusion: In conclusion, our data show that HRT has statistically significant role in determining BMI, fat percent mass and fat mass. The lipid profile including LDL, HDL, VLDL, ratio, triglycerides and total cholesterol found to be clinically better in HRT group as compared to the non-HRT group. The rationale for non-significant lipid profile probably lie in the fact that hormonal changes need a particular time period and might become significant in post-menopausal period.

Keywords: body composition, hormone replacement therapy, perimenopause, women health

Procedia PDF Downloads 283
5577 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control

Procedia PDF Downloads 436
5576 Seismic Activity in the Lake Kivu Basin: Implication for Seismic Risk Management

Authors: Didier Birimwiragi Namogo

Abstract:

The Kivu Lake Basin is located in the Western Branch of the East African Rift. In this basin is located a multitude of active faults, on which earthquakes occur regularly. The most recent earthquakes date from 2008, 2015, 2016, 2017 and 2019. The cities of Bukabu and Goma in DR Congo and Giseyi in Rwanda are the most impacted by this intense seismic activity in the region. The magnitude of the strongest earthquakes in the region is 6.1. The 2008 earthquake was particularly destructive, killing several people in DR Congo and Rwanda. This work aims to complete the distribution of seismicity in the region, deduce areas of weakness and establish a hazard map that can assist in seismic risk management. Using the local seismic network of the Goma Volcano Observatory, the earthquakes were relocated, and their focus mechanism was studied. The results show that most of these earthquakes occur on active faults described by Villeneuve in 1938. The alignment of the earthquakes shows a pace that follows directly the directions of the faults described by this author. The study of the focus mechanism of these earthquakes, also shows that these are in particular normal faults whose stresses show an extensive activity. Such study can be used for the establishment of seismic risk management tools.

Keywords: earthquakes, hazard map, faults, focus mechanism

Procedia PDF Downloads 124
5575 Supplementation of Fig Fruit (Ficus carica linn.) Extract in Extender on Sperm Motility and Viability of Native Chicken Semen after Cooling

Authors: N. Isnaini, S. Wahjuningsih

Abstract:

Fig fruit is the fruit of a tropical plant with content of flavanoids, vitamins A, C, and E which are antioxidants that effectively prevent and neutralize free radicals. This study was conducted to evaluate the supplementation of fig fruit extract in a physiological NaCl-based diluent on sperm motility and viability of native chicken semen after cooling. Semen was collected from 4 male mature chocks using massage method. Fresh semen evaluated for colour, pH, volume, concentration, mass motility, individual motility, life sperm and sperm abnormality. Semen was diluted with physiological NaCl-based extender supplemented with different levels of fig fruit extract (0, 10, 20 and 30 %) v/v with the ratio of 1 semen: 4 diluter. Semen used had mass motility of 2+ and motility of 70%. Immediately after dilution semen was stored in 3-5 °C and sperm motility and viability percentage were observed at 0, 12 and 24 h. The obtained data were analyze with Analysis of Variant (ANOVA) and Least Significant Difference were determined. The experiment was designed using completely random design (4 treatments and 10 replications). The results showed that the level of fig fruit extract had very significant effect (P < 0,01) on sperm motility and viability percentage in 0, 12 and 24 h of cooling. It can be concluded that the best fig fruit extract level for resulting optimal sperm motility and viability was 10%.

Keywords: chock, antioxidant, fig fruit extract, sperm

Procedia PDF Downloads 291
5574 A Study on Knowledge, Attitude and Behavior on Emergency Contraception among Higher Secondary and Bachelor Level Youth Students of Lekhnath Municipality, Nepal

Authors: Gokul Pathak, Dilip Kumar Yadav

Abstract:

Background: Unsafe/unprotected and early sexual relations are highly responsible for the problems of unwanted pregnancy, child birth and other adverse consequences. Emergency contraception (EC) refers to methods that women can use to prevent pregnancy after unprotected sexual intercourse, method failure or incorrect use. Aim and Objective: The objective of this research study was to assess the level of knowledge, attitude and behavior on emergency contraception among youth students of Lekhnath Municipality. Methodology: This institution based descriptive study was carried out in August-October 2012 on Lekhnath Municipality, Nepal. Multistage simple random sampling procedure with pretested semi structured questionnaire following self administered technique was used to collect information. Collected data was coded and entered in the EpiData 3.1 ® and exported to Statistical Package for Social Science (SPSS®) version 20.0 for analysis. Chi-square test and Spearman correlation was applied wherever required. Results: A total of 641 students (87.6 %), youth students participated in this study which incorporates 354 male and 287 female youth students, of them 54.3% were from Higher Secondary level and 45.7% were from Undergraduate level. The awareness of EC among respondents was found only 64.7%. 25.8% respondents were found to have fair knowledge level where as 74.2% had poor knowledge level. Level of knowledge was significantly associated with age, educational level, faculty and educational status of mother. The study showed 82.4% respondent’s favorable attitude towards use of EC. 21.1% respondents were found to be sexually active (29.7% male and 10.5% female) and only 28.1% of sexually active respondents had ever used any method of EC. Conclusion: Knowledge about EC was found quiet low among youth. There was significant lack of knowledge about exact time limit of using devices of EC. Similarly several misconceptions regarding EC were found very high among youth. Health education initiatives should target students as they are more likely to be sexually active.

Keywords: emergency contraception, youth, unsafe/unprotected sexual intercourse, knowledge, attitude and behavior

Procedia PDF Downloads 438
5573 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation

Authors: Jin Yue

Abstract:

Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.

Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control

Procedia PDF Downloads 49
5572 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia

Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono

Abstract:

Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.

Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length

Procedia PDF Downloads 206
5571 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 76
5570 Refinement of Existing Benzthiazole lead Targeting Lysine Aminotransferase in Dormant Stage of Mycobacterium tuberculosis

Authors: R. Reshma srilakshmi, S. Shalini, P. Yogeeswari, D. Sriram

Abstract:

Lysine aminotransferase is a crucial enzyme for dormancy in M. tuberculosis. It is involved in persistence and antibiotic resistance. In present work, we attempted to develop benzthiazole derivatives as lysine aminotransferase inhibitors. In our attempts, we also unexpectedly arrived at an interesting compound 21 (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-yl)benzoic acid which even though has moderate activity against persistent phase of mycobacterium, it has significant potency against active phase. In the entire series compound 22 (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-yl)isophthalic acid emerged as potent molecule with LAT IC50 of 2.62 µM. It has a significant log reduction of 2.9 and 2.3 fold against nutrient starved and biofilm forming mycobacteria. It was found to be inactive in MABA assay and M.marinum induced zebra fish model. It is also devoid of cytotoxicity. Compound 22 was also found to possess bactericidal effect which is independent of concentration and time. It was found to be effective in combination with Rifampicin in 3D granuloma model. The results are very encouraging as the hit molecule shows activity against active as well as persistent forms of tuberculosis. The identified hit needs further more pharmacokinetic and dynamic screening for development as new drug candidate.

Keywords: benzothiazole, latent tuberculosis, LAT, nutrient starvation

Procedia PDF Downloads 319
5569 Seismo-Volcanic Hazards in Great Ararat Region, Eastern Turkey

Authors: Mehmet Salih Bayraktutan, Emre Tokmak

Abstract:

Great Ararat Volcano is the highest peak in South Caucasus Volcanic Plateau. Uplifted by Quaternary basaltic pyroclastic and lava flows. Numerous volcanic cones formed along with the tensional fractures under N-S compressional geodynamic framework. Basaltic flows have fresh surface morphology give ages of 650-680 K years. Hyperstene andesites constitute a major mass of Greater Ararat gives ages of 450-490 K years. During the early eruption period, predominately pyroclastics, cinder, lapilly-ash volcanic bombs were extruded. Third-period eruptions dominantly basaltic lava flows. Andesitic domes aligned along with the NW-SE striking fractures. Hyalo basalt and hornblende basaltic lavas are the latest lava eruptions. Hyalo-basaltic eruptions occurred via parasitic cones distributed far from the center. Parasitic cones are most common at the foot of Mount covered by recent NW flowing basaltic lava. Some of the cones are distributed on a circular pattern. One of the most hazardous disasters recorded in Eastern Turkey was July 1840 Cehennem Canyon Flood. Volcanic activities seismically triggered resulted in melting of glacier cap, mixed with ash and pyroclastics, flowed down along the Valley. Mud rich Slush urged catastrophically northwards, crossed Ars River and damned Surmeli Basin, forming reservoir behind. Ararat volcanoes are located on NW-SE striking Agri Fault Zone. Right lateral extensional faults, along which a series of andesitic domes formed. Great Ararat, in general strato-type volcano. This huge structure, developed in two main parts with different topographic and morphological features. The large lower base covers a widespread area composed of predominantly pyroclastics, ignimbrites, aglomerates, thick pumice, perlite deposits. Approximately 1/3 of the Crest by height formed of this basement. And 2/3 of the upper part with a conic- shape composed of basaltic lava flows. The active tectonic structure consists of three different patterns. The first network is radially distributed fractures formed during the last stage of lava eruptions. The second group of active faults striking in NW direction, and continue in N30W strike, formes Igdir Fault Zone. The third set of faults, dipping in the northwest with 75-80 degrees, strikes NE- SW across the whole Mount, slicing Great Ararat into four segments. In the upper stage of Cehennem Canyon, this set cutting volcanic layers caused numerous Waterfalls, Rock Avalanches, Mud Flows along the canyon, threatens the Village of Yanidogan, at the apex of flood deposits. Great Ararat Region has high seismo-tectonic risk and by occurrence frequency and magnitude, which caused in history caused heavy disasters, at villages surrounding the Ararat Basement.

Keywords: Eastern Turkey, geohazard, great ararat volcano, seismo-tectonic features

Procedia PDF Downloads 175
5568 Control Flow around NACA 4415 Airfoil Using Slot and Injection

Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine

Abstract:

One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient

Keywords: CFD, control flow, lift, slot

Procedia PDF Downloads 182
5567 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Zafer Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper first of all investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as capillary absorption, sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total heat of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of capillary absorption and sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower permeability compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: diatomite, fibre, strength, supplementary cementing material

Procedia PDF Downloads 320
5566 Oscillating Water Column Wave Energy Converter with Deep Water Reactance

Authors: William C. Alexander

Abstract:

The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.

Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer

Procedia PDF Downloads 97
5565 Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry

Authors: Arifur Rahman, Ardeshir Amirkhani, Honghua Hu, Mark Molloy, Karen Vickery

Abstract:

Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections.

Keywords: bacterial biofilms, CDC bioreactor, S. aureus, mass spectrometry, TMT

Procedia PDF Downloads 158