Search results for: Tobit regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18777

Search results for: Tobit regression model

17547 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry

Authors: Gamze Sekeroglu, Mikail Altan

Abstract:

Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.

Keywords: profitability, regression analysis, inventory management, working capital

Procedia PDF Downloads 335
17546 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 71
17545 Design Channel Non Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC

Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa

Abstract:

This paper presents Carrier Sense Multiple Access (CSMA) communication model based on SoC design methodology. Such model can be used to support the modelling of the complex wireless communication systems, therefore use of such communication model is an important technique in the construction of high performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).

Keywords: systemC, modelling, simulation, CSMA

Procedia PDF Downloads 428
17544 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 146
17543 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca

Abstract:

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation

Procedia PDF Downloads 230
17542 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 226
17541 Unified Structured Process for Health Analytics

Authors: Supunmali Ahangama, Danny Chiang Choon Poo

Abstract:

Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.

Keywords: agile methodology, health analytics, unified process model, UML

Procedia PDF Downloads 506
17540 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure

Authors: Heba Abdelmotaal

Abstract:

This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.

Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression

Procedia PDF Downloads 360
17539 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: MMR, TWR, OC, DOE, ANOVA, minitab

Procedia PDF Downloads 325
17538 Analysis of the Temperature Dependence of Local Avalanche Compact Model for Bipolar Transistors

Authors: Robert Setekera, Ramses van der Toorn

Abstract:

We present an extensive analysis of the temperature dependence of the local avalanche model used in most of the modern compact models for bipolar transistors. This local avalanche model uses the Chynoweth's empirical law for ionization coefficient to define the generation of the avalanche current in terms of the local electric field. We carry out the model analysis using DC-measurements taken on both Si and advanced SiGe bipolar transistors. For the advanced industrial SiGe-HBTs, we consider both high-speed and high-power devices (both NPN and PNP transistors). The limitations of the local avalanche model in modeling the temperature dependence of the avalanche current mostly in the weak avalanche region are demonstrated. In addition, the model avalanche parameters are analyzed to see if they are in agreement with semiconductor device physics.

Keywords: avalanche multiplication, avalanche current, bipolar transistors, compact modeling, electric field, impact ionization, local avalanche

Procedia PDF Downloads 622
17537 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic

Authors: Jiri Dufek

Abstract:

The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)

Keywords: trip distribution, three dimension, transport model, municipalities

Procedia PDF Downloads 130
17536 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods

Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk

Abstract:

The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.

Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate

Procedia PDF Downloads 369
17535 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles

Authors: Mohsen Solimani Babarsad, Payam Taheri

Abstract:

Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.

Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’

Procedia PDF Downloads 363
17534 Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities

Authors: Nadia Nisar

Abstract:

Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process.

Keywords: influenza, climate, metrological, environmental

Procedia PDF Downloads 200
17533 Arsenite Remediation by Green Nano Zero Valent Iron

Authors: Ratthiwa Deewan, Visanu Tanboonchuy

Abstract:

The optimal conditions for green synthesis of zero-valent (G-NZVI) synthesis are investigated in this study using a Box Behnken design. The factors that were used in the study consisted of 3 factors as follows: the iron solution to mango peel extract ratio (1:1-1:3), feeding rate of mango peel extracts (1-5 mL/min), and agitation speed (300-30 rpm). The results showed that the optimization of conditions using the regression model was appropriate. The optimal conditions of the synthesis of G-NZVI for arsenate removal are the iron solution to mango peel extract ratio of 1:1, the feeding rate of mango peel extract at 5 mL/min, and the agitation speed rate of 300 rpm, which was able to arsenate removal of 100%.

Keywords: Box Behnken design, arsenate removal, green nano zero valent iron, arsenic

Procedia PDF Downloads 29
17532 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 150
17531 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning

Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana

Abstract:

Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.

Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning

Procedia PDF Downloads 36
17530 Designing Equivalent Model of Floating Gate Transistor

Authors: Birinderjit Singh Kalyan, Inderpreet Kaur, Balwinder Singh Sohi

Abstract:

In this paper, an equivalent model for floating gate transistor has been proposed. Using the floating gate voltage value, capacitive coupling coefficients has been found at different bias conditions. The amount of charge present on the gate has been then calculated using the transient models of hot electron programming and Fowler-Nordheim Tunnelling. The proposed model can be extended to the transient conditions as well. The SPICE equivalent model is designed and current-voltage characteristics and Transfer characteristics are comparatively analysed. The dc current-voltage characteristics, as well as dc transfer characteristics, have been plotted for an FGMOS with W/L=0.25μm/0.375μm, the inter-poly capacitance of 0.8fF for both programmed and erased states. The Comparative analysis has been made between the present model and capacitive coefficient coupling methods which were already available.

Keywords: FGMOS, floating gate transistor, capacitive coupling coefficient, SPICE model

Procedia PDF Downloads 545
17529 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
17528 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
17527 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization

Authors: Shama Urooj

Abstract:

The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.

Keywords: financial inclusion, energy performance, modernization, technological development, SCO.

Procedia PDF Downloads 75
17526 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility

Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu

Abstract:

The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.

Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education

Procedia PDF Downloads 313
17525 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx

Authors: Yao Song

Abstract:

Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.

Keywords: GZSCC, OCSCC, OPSCC, HPV

Procedia PDF Downloads 75
17524 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 355
17523 Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels

Authors: Lin-Lin Liu, Song-Qi Hu, Yin Wang

Abstract:

Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres.

Keywords: graphene oxide, paraffin-based fuels, oxidation, activation energy, TGA

Procedia PDF Downloads 402
17522 Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models

Authors: Mohammad Saber Rohi, Saghar Heidari

Abstract:

In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors.

Keywords: irrational exercise strategy, rationality parameter, regime-switching model, American option, finite element method, variational inequality

Procedia PDF Downloads 73
17521 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
17520 Evaluation of Age-Friendly Nursing Service System: KKU (AFNS:KKU) Model for the Excellence

Authors: Roongtiwa Chobchuen, Siriporn Mongkholthawornchai, Boonsong Hatawaikarn, Uriwan Chaichangreet, Kobkaew Thongtid, Pusda Pukdeekumjorn, Panita Limpawattana

Abstract:

Background: Age-friendly nursing service system in Srinagarind Hospital has been developed continuously based on the value and cultural background of Thailand which corporates with the modified WHO’s Age friendly Primary Care Service System. It consists of 3 issues; 1) development of staff training, 2) age-friendly service and 3) appropriate physical environment. Objective: To evaluate the efficacy of Age-friendly Nursing Service System: KKU (AFNS:KKU) model and to evaluate factors associated with nursing perception with AFN:KKU. Study design: Descriptive study Setting: 31 wards that served older patients in Srinagarind Hospital Populations: Nursing staff from 11 departments (31 wards) Instrument: Age-friendly nursing care scale as perceived by hospitalized older person Procedure and statistical analysis: All participants were asked questions using age-friendly nursing care scale as perceived by hospitalized older person questionnaires. Descriptive statistics and multiple logistic regression analyses were used to analyse the outcomes. Results: There were 337 participants recruited in this study. The majority of them were women (92%) with the mean ages of 29 years and 77.45% were nurse practitioners. They had average nursing experiences of 5 years. The average scores of age-friendly nursing care scale were high and highest in the area of attitude and communication. Age, sex, educational level, duration of work among, and having experience in aging training were not associated with nursing perception where type of department was an independent factor. Nurses from department of Surgery and Orthopedic, Eye and ENT, special ward and Obstetrics and Gynecological had significant greater perception than nurses from Internal Medicine Department (p < 0.05). Conclusion: Nurses had high scores in all dimensions of age-friendly concept. The result indicates that nurses have good attitude to aging care which can lead to improve quality of care. Organization should support other domains of ageing care to achieve greater effectiveness in geriatric care.

Keywords: age-friendly, nursing service system, excellence model, geriatric care

Procedia PDF Downloads 344
17519 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 176
17518 Investigating the Relationship between Emotional Intelligence and Self-Efficacy of Physical Education Teachers in Ilam Province

Authors: Ali Heyrani, Maryam Saidyousefi

Abstract:

The aim of the present study was to investigate the relationship between emotional intelligence and Self-Efficacy of physical education teachers in Ilam province. The research method is descriptive correlational. The study participants were of 170 physical education teachers (90 males, 80 females) with an age range of 20 to 50 years, who were selected randomly. The instruments for data collection were Emotional Intelligence Questionnaire Bar-on (1997) to assess the Emotional Intelligence teachers and Self-Efficacy Questionnaire to measure their Self-Efficacy. The questionnaires used in the interior are reliable and valid. To analyze the data, descriptive statistics and inferential tests (Kolmogorov-Smirnov test, Pearson correlation and multiple regression) at a significance level of P <0/ 05 were used. The Results showed that there is a significant positive relationship between totall emotional intelligence and Self-Efficacy of teachers, so the more emotional intelligence of physical education teachers the better the extent of Self-Efficacy. Also, the results arising from regression analysis gradually showed that among components of emotional intelligence, three components, the General Mood, Adaptability, and Interpersonal Communication to Self-Efficacy are of a significant positive relationship and are able to predict the Self-Efficacy of physical education teachers. It seems the application of this study ҆s results can help to education authorities to promote the level of teachers’ emotional intelligence and therefore the improvement of their Self-Efficacy and success in learners’ teaching and training.

Keywords: emotional intelligence, self-efficacy, physical education teachers, Ilam province

Procedia PDF Downloads 522