Search results for: Gang Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16916

Search results for: Gang Model

4376 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: contact strip, current collector, high-speed running, program control, wear

Procedia PDF Downloads 147
4375 Maximizing Bidirectional Green Waves for Major Road Axes

Authors: Christian Liebchen

Abstract:

Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).

Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming

Procedia PDF Downloads 120
4374 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 378
4373 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications

Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar

Abstract:

Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.

Keywords: boron nitride nanotube, radiation shielding, young modulus, atomistic modeling

Procedia PDF Downloads 302
4372 A Recommender System for Dynamic Selection of Undergraduates' Elective Courses

Authors: Adewale O. Ogunde, Emmanuel O. Ajibade

Abstract:

The task of selecting a few elective courses from a variety of available elective courses has been a difficult one for many students over the years. In many higher institutions, guidance and counselors or level advisers are usually employed to assist the students in picking the right choice of courses. In reality, these counselors and advisers are most times overloaded with too many students to attend to, and sometimes they do not have enough time for the students. Most times, the academic strength of the student based on past results are not considered in the new choice of electives. Recommender systems implement advanced data analysis techniques to help users find the items of their interest by producing a predicted likeliness score or a list of top recommended items for a given active user. Therefore, in this work, a collaborative filtering-based recommender system that will dynamically recommend elective courses to undergraduate students based on their past grades in related courses was developed. This approach employed the use of the k-nearest neighbor algorithm to discover hidden relationships between the related courses passed by students in the past and the currently available elective courses. Real students’ results dataset was used to build and test the recommendation model. The developed system will not only improve the academic performance of students, but it will also help reduce the workload on the level advisers and school counselors.

Keywords: collaborative filtering, elective courses, k-nearest neighbor algorithm, recommender systems

Procedia PDF Downloads 169
4371 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)

Procedia PDF Downloads 130
4370 Keto-Enol Tautomerism of Salicylideneaniline Substituted

Authors: Rihana Hadjeb, Djamel Barkat

Abstract:

Schiff bases derived from o-hydroxybenzaldehyde has attracted a great interest not only for its promising applications towards linear and non-linear optical properties, biological activity and technological applications but also used as model compounds for the theory of hydrogen bonding. Due to its intramolecular hydrogen bonding, depending on the position of proton in the hydrogen bond o-hydroxy salicylidene Schiff bases exhibit two tautomeric forms, enol-imine (E-form) and keto-enamine (K-form) both in solution and in crystalline state. A zwitterionic structure also appears due to a proton transfer in enol – imine and keto – amine tautomer. These classes of compounds also exhibit thermochromic and photochromic behavior. We undertook in this study the synthesis of ten compounds of hydroxy Schiff bases from the condensation of salicylic aldehyde and aniline substituted in the ortho, meta and para by the methyl, chloro and nitro groups. To study the keto-enol equilibrium of the compounds; UV-VIS spectra were studied in different polarity solvents. The compounds were in tautomeric equilibrium (enol imine O–H•••N, keto-amine O•••H–N forms). For some derivatives of salicylideneanilines the keto-amine form was observed in both ethanol and dioxane. IR results showed that all Schiff bases studied favor the enol-imine form over the keto form.

Keywords: salicylideneaniline, tautomerism, keto-enol equilibrium, UV-VIS spectroscopy, solvent effect

Procedia PDF Downloads 397
4369 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 149
4368 Effect of Twin Cavities on the Axially Loaded Pile in Clay

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

Presence of cavities in soil predictably induces ground deformation and changes in soil stress, which might influence adjacent existing pile foundations, though the effect of twin cavities on a nearby pile needs to be understood. This research is an attempt to identify the behaviour of piles subjected to axial load and embedded in cavitied clayey soil. A series of finite element modelling were conducted to investigate the performance of piled foundation located in such soils. The validity of the numerical simulation was evaluated by comparing it with available field test and alternative analytical model. The study involved many parameters such as twin cavities size, depth, spacing between cavities, and eccentricity of cavities from the pile axis on the pile performance subjected to axial load. The study involved many cases; in each case, a critical value has been found in which cavities’ presence has shown minimum impact on the behaviour of pile. Load-displacement relationships of the affecting parameters on the pile behaviour were presented to provide helpful information for designing piled foundation situated near twin underground cavities. It was concluded that the presence of the cavities within the soil mass reduces the ultimate capacity of pile. This reduction differs according to the size and location of the cavity.

Keywords: axial load, clay, finite element, pile, twin cavities, ultimate capacity

Procedia PDF Downloads 237
4367 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 162
4366 Impact of Flexibility on Patient Satisfaction and Behavioral Intention: A Critical Reassessment and Model Development

Authors: Pradeep Kumar, Shibashish Chakraborty, Sasadhar Bera

Abstract:

In the anticipation of demand fluctuations, services cannot be inventoried and hence it creates a difficult problem in marketing of services. The inability to meet customers (patients) requirements in healthcare context has more serious consequences than other service sectors. In order to meet patient requirements in the current uncertain environment, healthcare organizations are seeking ways for improved service delivery. Flexibility provides a mechanism for reducing variability in service encounters and improved performance. Flexibility is defined as the ability of the organization to cope with changing circumstances or instability caused by the environment. Patient satisfaction is an important performance outcome of healthcare organizations. However, the paucity of information exists in healthcare delivery context to examine the impact of flexibility on patient satisfaction and behavioral intention. The present study is an attempt to develop a conceptual foundation for investigating overall impact of flexibility on patient satisfaction and behavioral intention. Several dimensions of flexibility in healthcare context are examined and proposed to have a significant impact on patient satisfaction and intention. Furthermore, the study involves a critical examination of determinants of patient satisfaction and development of a comprehensive view the relationship between flexibility, patient satisfaction and behavioral intention. Finally, theoretical contributions and implications for healthcare professionals are suggested from flexibility perspective.

Keywords: healthcare, flexibility, patient satisfaction, behavioral intention

Procedia PDF Downloads 373
4365 Examining the Attitudes of Pre-School Teachers towards Values Education in Terms of Gender, School Type, Professional Seniority and Location

Authors: Hatice Karakoyun, Mustafa Akdag

Abstract:

This study has been made to examine the attitudes of pre-school teachers towards values education. The study has been made as a general scanning model. The study’s working group contains 108 pre-school teachers who worked in Diyarbakır, Turkey. In this study Values Education Attitude Scale (VEAS), which developed by Yaşaroğlu (2014), was used. In order to analyze the data for sociodemographic structure, percentage and frequency values were examined. The Kolmogorov-Smirnov method was used in determination of the normal distribution of data. During analyzing the data, KolmogorovSimirnov test and the normal curved histograms were examined to determine which statistical analyzes would be applied on the scale and it was found that the distribution was not normal. Thus, the Mann Whitney U analysis technique which is one of the nonparametric statistical analysis techniques were used to test the difference of the scores obtained from the scale in terms of independent variables. According to the analyses, it seems that pre-school teachers’ attitudes toward values education are positive. According to the scale with the highest average, it points out that pre-school teachers think that values education is very important for students’ and children’s future. The variables included in the scale (gender, seniority, age group, education, school type, school place) seem to have no effect on the pre-school teachers’ attitude grades which joined to the study.

Keywords: attitude scale, pedagogy, pre-school teacher, values education

Procedia PDF Downloads 250
4364 Examining Motivational Strategies of Foreign Manufacturing Firms in Ghana

Authors: Samuel Ato Dadzie

Abstract:

The objective of this study is to examine the influence of eclectic paradigm on motivational strategy of foreign subsidiaries in Ghana. This study uses binary regression model, and the analysis was based on 75 manufacturing investments made by MNEs from different countries in 1994–2008. The results indicated that perceived market size increases the probability of foreign firms undertaking a market seeking (MS) in Ghana, while perceived cultural distance between Ghana and foreign firm’s home countries decreased the probability of foreign firms undertaking an market seeking (MS) foreign direct investment (FDI) in Ghana. Furthermore, extensive international experience decreases the probability of foreign firms undertaking a market seeking (MS) foreign direct investment (FDI) in Ghana. Most of the studies done by earlier researchers were based on the advanced and emerging countries and offered support for the theory, which was used in generalizing the result that multinational corporations (MNCs) normally used the theory regarding investment strategy outside their home country. In using the same theory in the context of Ghana, the result does not offer strong support for the theory. This means that MNCs that come to Sub-Sahara Africa cannot rely much on eclectic paradigm for their motivational strategies because prevailing economic conditions in Ghana are different from that of the advanced and emerging economies where the institutional structures work.

Keywords: foreign subsidiary, motives, Ghana, foreign direct investment

Procedia PDF Downloads 435
4363 A Leadership Approach for the Sake of Organizations: Human-Oriented Leadership

Authors: Eser Bingül

Abstract:

The leadership and leaders, also having been a privileged subject of scientific researches in the last century, have become influential in shaping the destiny of the states since the first examples of the warfare history. The issue of leadership, finding a place in the management science, can also be defined as an integration of function within the aspect of leader. In this description, the relationship has come to the foreground which is established between the development of leadership theories and the elements of function which are leader, followers, and condition. While one reason of this analysis in leadership is to keep a lens to the historical background, the main reason has been a questioning the traits and education of leaders who have still affected the nation’s and organization’s fate. The links and analysis established in the definition of leadership have put forward the necessity of solving the unpredictable structure of human nature and behaviors in the focus of leadership approach. On the other hand becoming a model that meets the today’s needs of any system has given a clue that the leaders should turn towards the people. Being aware of this necessity, human-oriented leadership approach aims to gain both followers and their abilities to the system with giving them a deserved esteem and create the team spirit based on mutual trust. Ultimately this approach, with the determined leadership qualities consisting of charisma, ability of communication and trust, will be able to produce the solutions to the instant and long-term problems and uncertainties, derived from the variables of function, for the sake of systems.

Keywords: human nature, leadership, human-oriented approach, social sciences and humanities

Procedia PDF Downloads 321
4362 Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria

Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata

Abstract:

Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.

Keywords: contaminant, leachate, soil, groundwater, electrical, resistivity

Procedia PDF Downloads 164
4361 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 282
4360 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 183
4359 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 157
4358 Socio-Sensorial Assessment of Nursing Homes in Singapore: Towards Integrated Enabling Design

Authors: Zdravko Trivic, John Chye Fung, Ruzica Bozovic-Stamenovic

Abstract:

Within the context of rapidly ageing population in Singapore and the pressing demands on both caregivers and care providers, an integrated approach to ageing-friendly and ability-sensitive enabling environment becomes an imperative. This particularly applies to nursing home environments and their immediate surroundings, as they are becoming one of the main available options of long-term care for many senior adults who are unable to age at home. Yet, despite the considerable efforts to break the still predominant clinical approach to eldercare and to introduce more home-like design and person-centric care model, nursing homes keep being stigmatised and perceived as not so desirable environments to grow old in. The challenges are further emphasised by the associated physical, sensorial, psychological and cognitive declines that are the common consequences of ageing. Such declines have an immense impact on almost all aspects of older adults’ daily functioning, including problems with mobility and spatial orientation, difficulties in communication, withdrawal from social interaction, higher level of depression and decreased sense of independence and autonomy. However, typical nursing home designs tend to neglect the full capacities of balanced and carefully integrated multisensory stimuli as active component of care and ability building. This paper outlines part of a larger multi-disciplinary study of six nursing homes in Singapore, with overarching objectives to create new models of supportive nursing home environments that go beyond the clinical care model and encourage community integration with the nursing home settings. The paper focuses on the largely neglected aspects of sensorial comfort and multi-sensorial properties of nursing homes, including both indoor and immediate outdoor spaces (boundaries). The objective was to investigate the sensory rhythms and explore their role in nursing home users’ daily routine and therapeutic capacities. Socio-sensory rhythms were captured and analysed through a combination of on-site sensory recordings of “objective” quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, perceived experienced data, spatial mapping, first-person observations of nursing home users’ activity patterns, and interviews. This was done in addition to employment of available assessment tools, such as Wisconsin Person Directed Care assessment tool, Dementia Quality of Life [DQoL] instrument, and Resident Environment Impact Scale [REIS], as these tools address the issues of sensorial experience insufficiently and selectively. Key findings indicate varied levels of sensory comfort, as well as diversity, intensity, and customisation of multi-sensory conditions within different nursing home spaces. Sensory stimulation is typically concentrated in communal living areas of the nursing homes or in the areas that often provide controlled or limited access, including specifically designed sensory rooms and outdoor green spaces (gardens and terraces). Opportunities for sensory stimulation are particularly limited for bed-bound senior residents and within more functional areas, such as corridors. This suggests that the capacities of nursing home designs to provide more diverse and better integrated pleasant sensory conditions as integrated “therapeutic devices” to build nursing home residents’ physical and mental abilities, encourage activity and improve wellbeing are far from exhausted.

Keywords: ageing-supportive environment, enabling design, multi-sensory assessment, nursing home environment

Procedia PDF Downloads 178
4357 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive

Procedia PDF Downloads 328
4356 Electoral Mathematics and Asymmetrical Treatment to Political Parties: The Mexican Case

Authors: Verónica Arredondo, Miguel Martínez-Panero, Teresa Peña, Victoriano Ramírez

Abstract:

The Mexican Chamber of Deputies is composed of 500 representatives: 300 of them elected by relative majority and another 200 ones elected through proportional representation in five electoral clusters (constituencies) with 40 representatives each. In this mixed-member electoral system, the seats distribution of proportional representation is not independent of the election by relative majority, as it attempts to correct representation imbalances produced in single-member districts. This two-fold structure has been maintained in the successive electoral reforms carried out along the last three decades (eight from 1986 to 2014). In all of them, the election process of 200 seats becomes complex: Formulas in the Law are difficult to understand and to be interpreted. This paper analyzes the Mexican electoral system after the electoral reform of 2014, which was applied for the first time in 2015. The research focuses on contradictions and issues of applicability, in particular situations where seats allocation is affected by ambiguity in the law and where asymmetrical treatment of political parties arises. Due to these facts, a proposal of electoral reform will be presented. It is intended to be simpler, clearer, and more enduring than the current system. Furthermore, this model is more suitable for producing electoral outcomes free of contradictions and paradoxes. This approach would allow a fair treatment of political parties and as a result an improved opportunity to exercise democracy.

Keywords: electoral mathematics, electoral reform, Mexican electoral system, political asymmetry, proportional representation

Procedia PDF Downloads 255
4355 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia PDF Downloads 130
4354 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 371
4353 Inversion of Gravity Data for Density Reconstruction

Authors: Arka Roy, Chandra Prakash Dubey

Abstract:

Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.

Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation

Procedia PDF Downloads 216
4352 Failure Probability Assessment of Concrete Spherical Domes Subjected to Ventilation Controlled Fires Using BIM Tools

Authors: A. T. Kassem

Abstract:

Fires areconsidered a common hazardous action that any building may face. Most buildings’ structural elements are designed, taking into consideration precautions for fire safety, using deterministic design approaches. Public and highly important buildings are commonly designed considering standard fire rating and, in many cases, contain large compartments with central domes. Real fire scenarios are not commonly brought into action in structural design of buildings because of complexities in both scenarios and analysis tools. This paper presents a modern approach towards analysis of spherical domes in real fire condition via implementation of building information modelling, and adopting a probabilistic approach. BIMhas been implemented to bridge the gap between various software packages enabling them to function interactively to model both real fire and corresponding structural response. Ventilation controlled fires scenarios have been modeled using both “Revit” and “Pyrosim”. Monte Carlo simulation has been adopted to engage the probabilistic analysis approach in dealing with various parameters. Conclusions regarding failure probability and fire endurance, in addition to the effects of various parameters, have been extracted.

Keywords: concrete, spherical domes, ventilation controlled fires, BIM, monte carlo simulation, pyrosim, revit

Procedia PDF Downloads 99
4351 Autophagy Regulates Human Hepatocellular Carcinoma Tumorigenesis through Selective Degradation of Cyclin D1

Authors: Shan-Ying Wu, Sheng-Hui Lan, Xi-Zhang Lin, Ih-Jen Su, Ting-Fen Tsai, Chia-Jui Yen, Tsung-Hsueh Lu, Fu-Wen Liang, Huey-Jen Su, Chun-Li Su, Hsiao-Sheng Liu

Abstract:

In hepatocelluar carcinoma (HCC), dysregulated expression of cyclin D1 and impaired autophagy has been reported separately. However, the relationship between them has not been explored. In this study, we demonstrated that autophagy was inversely correlated with cyclin D1 expression in 147 paired HCC patient specimens. HCC specimen with highly expression of cyclin D1 shows correlation with poor overall survival rate. Furthermore, induction of autophagy by amiodarone (antiarrhythmic drug) in Hep 3B cells, cyclin D1 was recruited into autophagosomes demonstrated by immune-gold labeling of cyclin D1 after extraction of autophagosomes. We further demonstrated that autophagy suppresses Hep 3B cell proliferation, and further analysis revealed that cell cycle was arrested at G1 phase. The interaction between LC3 (maker of autophagy) and cyclin D1 was increased after autophagy induction. In addition, ubiquitinated-cyclin D1 was also increased after autophagy induction, which is selectively degraded by autophagosome through binding with SQSTM1/p62 (an adaptor protein). In vivo study showed that amiodarone induced autophagy suppresses liver tumor formation in xenograft mouse and orthotopic rat model through decreasing cyclin D1 expression and inhibition of cell proliferation. Altogether, we reveal a novel mechanism that ubiquitinated cyclin D1 degraded by autophagic pathway by p62 and amiodarone is a promising drug for targeting cyclin D1 in liver cancer therapy.

Keywords: autophagy, cyclin D1, hepatocellular carcinoma, amiodarone

Procedia PDF Downloads 297
4350 Women's Rights in the Constitution of Nepal: 2015

Authors: Sudir Silwal, Surendra KC

Abstract:

Nepalese legal system was derived from Hindu sacred before the democratic movement in 1990. Before this movement, Nepal had a patrimonial system. Nepal has ratified the UN Convention on the Elimination of all forms of Discrimination Against Women (CEDAW). Women organizations of the various political parties, different social organizations and women activists are playing the significant role to empower the women through the social awareness campaign across the country. As a result, 33% women representation in the local government has ascertained by the current constitution. The Constitution of Nepal-2015 has mentioned the rights of women as a fundamental right and it also has provisioned the National Women Commission as the constitutional body. This constitution is the model of gender friendly constitution in the world. As per this constitution, the Citizenship certificate is issued based on the lineage of the mother or father along with gender identity. The current constitution has guaranteed 33% women participation in judiciary, bureaucracy and legislation. This constitution further states that the parliament must elect a woman either as the president or the vice president. Similarly same rule is applied to elect the speaker and the deputy speaker in the parliament. In the same constitution, rights of the third gender also has guaranteed. The guiding principles of the constitution further explain that the constitution has followed the rule of positive discrimination and proportional representation of women in all elements of the state. This study shows that the state is not only focused in the representation of women in all structure of the nation but also need to emphasize the enhancement of the capability of the women to make them equal to the men.

Keywords: constitution, empowerment, representation, women's rights

Procedia PDF Downloads 524
4349 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 74
4348 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test

Procedia PDF Downloads 403
4347 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion

Procedia PDF Downloads 421