Search results for: surface soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8925

Search results for: surface soil

7725 Ascorbic Acid Application Mitigates the Salt Stress Effects on Helianthus annuus L. Plants Grown on a Reclaimed Saline Soil

Authors: Mostafa M. Rady, Majed M. Howladar, Saad M. Howladar

Abstract:

A field trial was conducted during two successive seasons (2013 and 2014) in Southeast Fayoum, Egypt (29º 17'N; 30º 53'E) to investigate the improving effect of ascorbic acid (Vit C) foliar spray at the rates of 0, 1, 2 or 3 mM on the growth, seed and oil yields, and some chemical constituents of sunflower plants grown on a reclaimed saline soil (EC = 7.98–7.83). Vit C application at all rates (1, 2 and 3 mM) was significantly increased growth traits, seed and oil yields, and the concentrations of endogenous Vit C, leaf photosynthetic pigments, total soluble sugars, free proline and nutrient elements as well as K/Na ratio. In contrast, Na concentration was significantly reduced with the application of all Vit C levels. Vit C foliar spray at the rate of 2 mM was found to be the best treatment, alleviating the inhibitory effects of salinity on sunflower plants grown on a reclaimed saline soil.

Keywords: Helianthus annuus L., Vit C, salinity, growth, seed and oil yields, osmoprotectants

Procedia PDF Downloads 399
7724 Agricultural Land Suitability Analysis of Kampe-Omi Irrigation Scheme Using Remote Sensing and Geographic Information System

Authors: Olalekan Sunday Alabi, Titus Adeyemi Alonge, Olumuyiwa Idowu Ojo

Abstract:

Agricultural land suitability analysis and mapping play an imperative role for sustainable utilization of scarce physical land resources. The objective of this study was to prepare spatial database of physical land resources for irrigated agriculture and to assess land suitability for irrigation and developing suitable area map of the study area. The study was conducted at Kampe-Omi irrigation scheme located at Yagba West Local Government Area of Kogi State, Nigeria. Temperature and rainfall data of the study area were collected for 10 consecutive years (2005-2014). Geographic Information System (GIS) techniques were used to develop irrigation land suitability map of the study area. Attribute parameters such as the slope, soil properties, topography of the study area were used for the analysis. The available data were arranged, proximity analysis of Arc-GIS was made, and this resulted into five mapping units. The final agricultural land suitability map of the study area was derived after overlay analysis. Based on soil composition, slope, soil properties and topography, it was concluded that; Kampe-Omi has rich sandy loam soil, which is viable for agricultural purpose, the soil composition is made up of 60% sand and 40% loam. The land-use pattern map of Kampe-Omi has vegetal area and water-bodies covering 55.6% and 19.3% of the total assessed area respectively. The landform of Kampe-Omi is made up of 41.2% lowlands, 37.5% normal lands and 21.3% highlands. Kampe-Omi is adequately suitable for agricultural purpose while an extra of 20.2% of the area is highly suitable for agricultural purpose making 72.6% while 18.7% of the area is slightly suitable.

Keywords: remote sensing, GIS, Kampe–Omi, land suitability, mapping

Procedia PDF Downloads 179
7723 The Behavior of Ordinary and Encased Stone Columns in Soft Clay Soil of Egypt: A Finite Element Study

Authors: Mahmoud F. Awad-Allah, Mohammed Rabeih, Eman Abdel Baseer

Abstract:

Soft to very soft soil deposits are widely speared in some areas of Egypt such as East Port Said, Damietta, Kafr El-Sheik, Alexandria, etc. The construction projects in these areas have faced the challenge of the presence of extended deep layers of soft and very soft clays which reach to depths of 40 to 60 m from the ground level. Stone columns are commonly used to support structures overlying soft ground soils and surcharged by embankment type loading. Therefore, this paper introduces a wide comparison numerical study between the ordinary stone columns (OSC) versus the geosynthetic encased stone columns (ESC) installed in soft clay soil deposit using finite element method (FEM). Parametric study of an embankment on soft soils reinforced with stone columns is performed using commercial computer program based on the finite element technique (PLAXIS 2D). The investigation will present the influence of the following parameters: diameter of stone columns, stiffness of geosynthetic encasement, embedded depth of stone column from ground level, and the length encasement of the stone column on the consolidation time, vertical settlement, and lateral displacement of soft clay soil formations.

Keywords: finite element method, geosynthetic, lateral displacement, settlement, soft clay

Procedia PDF Downloads 183
7722 Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd

Authors: Ji Sun Kim, Jae Ho Baek, Kyeong Ho Kim, Ji Hae Ha, Seong Soo Hong, Jung-Wook Park, Man Sig Lee

Abstract:

Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/.

Keywords: carbon, dispersion, Pd/C, specific are, support

Procedia PDF Downloads 338
7721 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling

Authors: A. Pesin, D. Pustovoytov, M. Sverdlik

Abstract:

During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.

Keywords: roughing hot rolling, FEM, crack, bulging

Procedia PDF Downloads 365
7720 Influence of Climate Change on Landslides in Northeast India: A Case Study

Authors: G. Vishnu, T. V. Bharat

Abstract:

Rainfall plays a major role in the stability of natural slopes in tropical and subtropical regions. These slopes usually have high slope angles and are stable during the dry season. The critical rainfall intensity that might trigger a landslide may not be the highest rainfall. In addition to geological discontinuities and anthropogenic factors, water content, suction, and hydraulic conductivity also play a role. A thorough geotechnical investigation with the principles of unsaturated soil mechanics is required to predict the failures in these cases. The study discusses three landslide events that had occurred in residual hills of Guwahati, India. Rainfall data analysis, history image analysis, land use, and slope maps of the region were analyzed and discussed. The landslide occurred on June (24, 26, and 28) 2020, on the respective sites, but the highest rainfall was on June (6 and 17) 2020. The factors that lead to the landslide occurrence is the combination of critical events initiated with rainfall, causing a reduction in suction. The sites consist of a mixture of rocks and soil. The slope failure occurs due to the saturation of the soil layer leading to loss of soil strength resulting in the flow of the entire soil rock mass. The land-use change, construction activities, other human and natural activities that lead to faster disintegration of rock mass may accelerate the landslide events. Landslides in these slopes are inevitable, and the development of an early warning system (EWS) to save human lives and resources is a feasible way. The actual time of failure of a slope can be better predicted by considering all these factors rather than depending solely on the rainfall intensities. An effective EWS is required with less false alarms in these regions by proper instrumentation of slope and appropriate climatic downscaling.

Keywords: early warning system, historic image analysis, slope instrumentation, unsaturated soil mechanics

Procedia PDF Downloads 95
7719 Spatial Distribution of Natural Radionuclides in Soil, Sediment and Waters in Oil Producing Areas in Niger Delta Region of Nigeria

Authors: G. O. Avwiri, E. O. Agbalagba, C. P. Ononugbo

Abstract:

Activity concentrations of natural radionuclides (226Ra, 232Th and 40K) in the soil, sediment and water of oil producing communities in Delta and Rivers States were determined using γ-ray spectrometry. The mean soil/sediment activity concentration of 226Ra, 232Th and 40K in onshore west in Delta state is 40.2±5.1Bqkg-1, 29.9±4.2Bqkg-1 and 361.5±20.0Bqkg-1 respectively, the corresponding values obtained in onshore east1 of Rivers state is 20.9±2.8Bqkg-1, 19.4±2.5Bqkg-1and 260.0±14.1Bqkg-1 respectively. While the mean activity concentration of 226Ra, 232Th and 40K in onshore east2 of Rivers state is 29.3±3.5Bqkg-1, 21.6±2.6Bqkg-1 and 262.1±14.6Bqkg-1 respectively. These values obtained show enhanced NORMs but are well within the world range. All the radiation hazard indices examined in soil have mean values lower than their maximum permissible limits. In drinking water, the obtained average values of226Ra, 228Ra and 40K is 8.4±0.9, 7.3±0.7 and 29.9±2.2Bql-1 respectively for well water, 4.5±0.6, 5.1±0.4 and 20.9±2.0Bql-1 respectively for borehole water and 11.3±1.2, 8.5±0.7 and 32.4±3.7Bql-1 respectively for river water in onshore west. For onshore east1, average activity concentration of 226Ra, 228Ra and 40K is 8.3±1.0, 8.6±1.1 and 39.6±3.3Bql-1 respectively for well water, 3.8±0.8, 4.9±0.6 and 35.7±4.1Bql-1 respectively for borehole water and 5.5±0.8, 5.4±0.7 and 36.9±3.8Bql-1 respectively for river water. While in onshore east2 average value of 226Ra, 228Ra and 40K is 10.1±1.1, 8.3±1.0 and 50.0±3.9Bql-1 respectively for well water, 4.7±0.9, 4.0±0.4 and 28.8±3.0Bql-1 respectively for borehole water and 7.7±0.9, 6.1±0.8 and 27.1±2.9Bql-1 respectively for river water and the average activity concentrations in the produced water226Ra, 228Ra and 40K is 5.182.14Bql-1, 6.042.48Bql-1 and 48.7813.67Bql-1 respectively. These values obtained are well above world average values of 1.0, 0.1 and 10Bql-1 for 226Ra, 228Ra and 40K respectively, those of the control site values and most reported values around the world. Though the hazard indices (Raeq, Hex, Hin) examined in water is still within the tolerable level, the committed effective dose estimated are above ICPR 0.1 mSvy-1 permissible limits. The overall results show that soil and sediment in the area are safe radiologically, but the result indicates some level of water pollution in the studied area.

Keywords: radioactivity, soil, sediment and water, Niger Delta, gamma detector

Procedia PDF Downloads 267
7718 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 91
7717 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts

Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo

Abstract:

Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.

Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations

Procedia PDF Downloads 33
7716 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou

Authors: Boukari Abdou Wakilou

Abstract:

Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.

Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin

Procedia PDF Downloads 40
7715 Effects of Surface Insulation of Silicone Rubber Composites in HVDC

Authors: Min-Hae Park, Ju-Na Hwang, Cheong-won Seo, Ji-Ho Kim, Kee-Joe Lim

Abstract:

Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test.

Keywords: composite, silicone rubber, surface insulation, HVDC

Procedia PDF Downloads 390
7714 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 70
7713 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.

Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD

Procedia PDF Downloads 82
7712 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.

Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation

Procedia PDF Downloads 120
7711 Undrained Shear Strength and Anisotropic Yield Surface of Diatomaceous Mudstone

Authors: Najibullah Arsalan, Masaru Akaishi, Motohiro Sugiyama

Abstract:

When constructing a structure on soft rock, adequate research and study are required concerning the shear behavior in the over-consolidation region because soft rock is considered to be in a heavily over-consolidated state. In many of the existing studies concerning the strength of soft rock, triaxial compression tests were conducted using isotropically consolidated samples. In this study, the strength of diatomaceous soft rock anisotropically consolidated under a designated consolidation pressure is examined in undrained triaxial compression tests, and studies are made of the peak and residual strengths of the sample in the over-consolidated state in the initial yield surface and the anisotropic yield surface.

Keywords: diatomaceouse mudstone, shear strength, yield surface, triaxial compression test

Procedia PDF Downloads 413
7710 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity

Procedia PDF Downloads 164
7709 Ground Deformation Module for the New Laboratory Methods

Authors: O. Giorgishvili

Abstract:

For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.

Keywords: build, deformation modulus, foundations, ground, laboratory research

Procedia PDF Downloads 353
7708 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 176
7707 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering

Authors: Dong Nyoung Heo, Il Keun Kwon

Abstract:

Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.

Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing

Procedia PDF Downloads 95
7706 Soil-Structure Interaction in Stiffness and Strength Degrading Systems

Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak

Abstract:

We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.

Keywords: inelastic, seismic, building, foundation, interaction

Procedia PDF Downloads 267
7705 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 165
7704 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 49
7703 Identification of Deep Landslide on Erzurum-Turkey Highway by Geotechnical and Geophysical Methods and its Prevention

Authors: Neşe Işık, Şenol Altıok, Galip Devrim Eryılmaz, Aydın durukan, Hasan Özgür Daş

Abstract:

In this study, an active landslide zone affecting the road alignment on the Tortum-Uzundere (Erzurum/Turkey) highway was investigated. Due to the landslide movement, problems have occurred in the existing road pavement, which has caused both safety problems and reduced driving comfort in the operation of the road. In order to model the landslide, drilling, geophysical and inclinometer studies were carried out in the field within the scope of ground investigation. Laboratory tests were carried out on soil and rock samples obtained from the borings. When the drilling and geophysical studies were evaluated together, it was determined that the study area has a complex geological structure. In addition, according to the inclinometer results, the direction and speed of movement of the landslide mass were observed. In order to create an idealized geological profile, all field and laboratory studies were evaluated together and then the sliding surface of the landslide was determined by back analysis method. According to the findings obtained, it was determined that the landslide was massively large, and the movement occurred had a deep sliding surface. As a result of the numerical analyses, it was concluded that the Slope angle reduction is the most economical and environmentally friendly method for the control of the landslide mass.

Keywords: landslide, geotechnical methods, geophysics, monitoring, highway

Procedia PDF Downloads 54
7702 Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi

Authors: Abel Mahowe

Abstract:

Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals.

Keywords: aquatic, erosion, furrow, soil

Procedia PDF Downloads 269
7701 Mechanical-Reliability Coupling for a Bearing Capacity Assessment of Shallow Foundations

Authors: Amal Hentati, Mbarka Selmi, Tarek Kormi, Julien Baroth, Barthelemy Harthong

Abstract:

The impact of uncertainties on the performance assessment of shallow foundations is often significant. The need of the geotechnical engineers to a more objective and rigorous description of soil variations permitting to quantify these uncertainties and to incorporate them into calculation methods led to the development of reliability approaches. In this context, a mechanical-reliability coupling was developed in this paper, using a program coded in Matlab and the finite element software Abaqus, for the bearing capacity assessment of shallow foundations. The reliability analysis, based on the finite element method, assumed both soil cohesion and friction angle as uncertain parameters characterized by normal or lognormal probability distributions. The inherent spatial variability of both soil properties was, then, taken into account using 1D stationary random fields. The application of the proposed methodology to a shallow foundation subjected to a centered vertical loading permitted to highlight the proposed process interest. Findings proved the insufficiency of the conventional approach to predict the foundation failure and a high sensitivity of the ultimate loads to the soil properties uncertainties, mainly those related to the friction angle, was noted. Moreover, an asymmetry of both displacement and velocity fields was obtained.

Keywords: mechanical-reliability coupling, finite element method, shallow foundation, random fields, spatial variability

Procedia PDF Downloads 642
7700 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability

Procedia PDF Downloads 296
7699 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils

Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.

Keywords: copper, Klara, lime, N100, phytoextraction

Procedia PDF Downloads 129
7698 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 270
7697 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.

Keywords: composites, acetylation, natural fiber, surface treatment

Procedia PDF Downloads 393
7696 Study of the Influence of Nozzle Length and Jet Angles on the Air Entrainment by Plunging Water Jets

Authors: José Luis Muñoz-Cobo González, Sergio Chiva Vicent, Khaled Harby Mohamed

Abstract:

When a vertical liquid jet plunges into a liquid surface, after passing through a surrounding gas phase, it entrains a large amount of gas bubbles into the receiving pool, and it forms a large submerged two-phase region with a considerable interfacial area. At the intersection of the plunging jet and the liquid surface, free-surface instabilities are developed, and gas entrainment may be observed. If the jet impact velocity exceeds an inception velocity that is a function of the plunging flow conditions, the gas entrainment takes place. The general goal of this work is to study the effect of nozzle parameters (length-to-diameter ratio (lN/dN), jet angle (α) with the free water surface) and the jet operating conditions (initial jet diameters dN, initial jet velocity VN, and jet length x1) on the flow characteristics such as: inception velocity of the gas entrainment Ve, bubble penetration depth Hp, gas entrainment rate, Qa, centerline jet velocity Vc, and the axial jet velocity distribution Vx below the free water surface in a plunging liquid jet system.

Keywords: inclined plunging water jets, entrainment, two phase flow, nozzle length

Procedia PDF Downloads 445