Search results for: state machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9915

Search results for: state machine

8715 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 75
8714 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: absorption, distillation, heat pump, Unisim design

Procedia PDF Downloads 338
8713 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 322
8712 Study of Performance Based Parameters on Sprint Interval Training and Steady State Run: Trained Young Female

Authors: Abdul Latif Shaikh, Osama Kattos

Abstract:

Purpose: The study compared the effects of intra and inter group short duration intensity training and long duration steady state-run training on the cardiovascular performance on female athletes. Method: Twenty trained young female athletes age between 17 to 20 years were randomly selected to participate in the test. The sprint interval training (n-10) program consisted of 5 min sprints and steady state run (n-10) conducted for 30 min. Both groups completed eight sessions of training within four weeks. Result: In intragroup distribution of mean % change in all the variables from week 4 to week 1 did not differ significantly (p-value > 0.05). The inter-group means value of post resting heart rate, max oxygen consumption (VO2max), and calorie expenditure in sprint interval training was higher with compared with steady state run. Conclusion: The comparative mean value of the intergroups program concludes that the SIT program is superior to SSR in performance-based variables in trained young females. The SIT program can be applied as a time-efficient program for improving performance.

Keywords: calorie expenditure, maximum rate of oxygen consumption, post recovery HR (1-4-7 min), time domain

Procedia PDF Downloads 172
8711 A Linearly Scalable Family of Swapped Networks

Authors: Richard Draper

Abstract:

A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.

Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology

Procedia PDF Downloads 121
8710 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 149
8709 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features

Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili

Abstract:

In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.

Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features

Procedia PDF Downloads 320
8708 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants

Authors: Mehmet Akif Bütüner, İlhan Koşalay

Abstract:

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.

Keywords: hydroelectric, governor, anomaly detection, machine learning, regression

Procedia PDF Downloads 97
8707 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation

Procedia PDF Downloads 267
8706 Stabilizing of Lithium-Solid-Electrolyte Interfaces by Atomic Layer Deposition Prepared Nano-Interlayers for a Model All-Solid-State Battery

Authors: Rainer Goetz, Zahra Ahaliabadeh, Princess S. Llanos, Aliaksandr S. Bandarenka, Tanja Kallio

Abstract:

In order to understand the electrochemistry of all-solid-state batteries (ASSBs), the use of electrochemical equivalent circuits with a physical meaning is essential. A model battery is needed whose characterization is independent of the influence of the complex battery assembly. Lithium-Ion Conducting Glass-Ceramic (LICGC), a model solid electrolyte, is chosen for its stability in the air, but on the other hand, it is also well-known for its instability against metallic lithium upon direct contact. Hence, as a first step towards a model ASSB, the interface between lithium and the solid electrolyte (SE) is stabilized with thin (5 nm and 10 nm) coatings of titanium oxide (TO) and lithium titanium oxide (LTO). Impedance data shows that both materials are able to protect the SE surface from rapid degradation due to reducing lithium and, therefore, can serve as a protective interlayer on the anode side of a model ASSB.

Keywords: all-solid-state battery, lithium anode, solid electrolytes, interlayers

Procedia PDF Downloads 115
8705 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 90
8704 Overview of Resources and Tools to Bridge Language Barriers Provided by the European Union

Authors: Barbara Heinisch, Mikael Snaprud

Abstract:

A common, well understood language is crucial in critical situations like landing a plane. For e-Government solutions, a clear and common language is needed to allow users to successfully complete transactions online. Misunderstandings here may not risk a safe landing but can cause delays, resubmissions and drive costs. This holds also true for higher education, where misunderstandings can also arise due to inconsistent use of terminology. Thus, language barriers are a societal challenge that needs to be tackled. The major means to bridge language barriers is translation. However, achieving high-quality translation and making texts understandable and accessible require certain framework conditions. Therefore, the EU and individual projects take (strategic) actions. These actions include the identification, collection, processing, re-use and development of language resources. These language resources may be used for the development of machine translation systems and the provision of (public) services including higher education. This paper outlines some of the existing resources and indicate directions for further development to increase the quality and usage of these resources.

Keywords: language resources, machine translation, terminology, translation

Procedia PDF Downloads 319
8703 An Integrated Cloud Service of Application Delivery in Virtualized Environments

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

Virtualization technologies are experiencing a renewed interest as a way to improve system reliability, and availability, reduce costs, and provide flexibility. This paper presents the development on leverage existing cloud infrastructure and virtualization tools. We adopted some virtualization technologies which improve portability, manageability and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. Given the development of application virtualization, it allows shifting the user’s applications from the traditional PC environment to the virtualized environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenance and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible and web-based application virtualization service represent the next significant step to the mobile workplace, and it lets user executes their applications from virtually anywhere.

Keywords: cloud service, application virtualization, virtual machine, elastic environment

Procedia PDF Downloads 282
8702 The Effect of Rowing Exercise on Elderly Health

Authors: Rachnavy Pornthep, Khaothin Thawichai

Abstract:

The purpose of this paper was to investigate the effects of rowing ergometer exercise on older persons health. The subjects were divided into two groups. Group 1 was control group (10 male and 10 female) Group 2 was experimental group (10 male and 10 female). The time for study was 12 week. Group 1 engage in normal daily activities Group 2 Training with rowing machine for 20 minutes three days a week. The average age of the experimental group was 73.7 years old, mean weight 55.4 kg, height 154.8 cm in the control group, mean age was 74.95 years, mean weight 48.6 kg, mean height 153.85 cm. Physical fitness test composted of body size, flexibility, Strength, muscle endurance and cardiovascular endurance. The comparison between the experimental and control groups before training showed that body weight, body mass index and waist to hip ratio were significantly different. The flexibility, strength, cardiovascular endurance was not significantly different. The comparison between the control group and the experimental group after training showed that body weight, body mass index and cardiovascular endurance were significantly different. The ratio of waist to hips, flexibility and muscular strength were not significantly different. Comparison of physical fitness before training and after training of the control group showed that body weight, flexibility (Sit and reach) and muscular strength (30 – Second chair stand) were significantly different. Body mass index, waist to hip ratio, muscles flexible (Shoulder girdle flexibility), muscle strength (30 – Second arm curl) and the cardiovascular endurance were not significantly difference. Comparison of physical fitness before training and after training the experimental group showed that waist to hip ratio, flexibility (sit and reach) muscle strength (30 – Second chair stand), cardiovascular endurance (Standing leg raises - up to 2 minutes) were significantly different. The Body mass index and the flexibility (Shoulder girdle flexibility) no significantly difference. The study found that exercising with rowing machine can improve the physical fitness of the elderly, especially the cardiovascular endurance, corresponding with the past research on the effects of exercise in the elderly with different exercise such as cycling, treadmill, walking on the elliptical machine. Therefore, we can conclude that exercise by using rowing machine can improve cardiovascular system and flexibility in the elderly.

Keywords: effect, rowing, exercise, elderly

Procedia PDF Downloads 495
8701 The Secrecy Capacity of the Semi-Deterministic Wiretap Channel with Three State Information

Authors: Mustafa El-Halabi

Abstract:

A general model of wiretap channel with states is considered, where the legitimate receiver and the wiretapper’s observations depend on three states S1, S2 and S3. State S1 is non-causally known to the encoder, S2 is known to the receiver, and S3 remains unknown. A secure coding scheme, based using structured-binning, is proposed, and it is shown to achieve the secrecy capacity when the signal at legitimate receiver is a deterministic function of the input.

Keywords: physical layer security, interference, side information, secrecy capacity

Procedia PDF Downloads 389
8700 Electron Spin Resonance of Conduction and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism

Authors: S. N. Ekbote, G. K. Padam, Manju Arora

Abstract:

Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)₂Sr₂Ca₂Cu₃O₁₀₋ₓ (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.

Keywords: Bi-2223 superconductor, CESR, ESR, exchange interactions, spin waves

Procedia PDF Downloads 131
8699 Disentangling the Sources and Context of Daily Work Stress: Study Protocol of a Comprehensive Real-Time Modelling Study Using Portable Devices

Authors: Larissa Bolliger, Junoš Lukan, Mitja Lustrek, Dirk De Bacquer, Els Clays

Abstract:

Introduction and Aim: Chronic workplace stress and its health-related consequences like mental and cardiovascular diseases have been widely investigated. This project focuses on the sources and context of psychosocial daily workplace stress in a real-world setting. The main objective is to analyze and model real-time relationships between (1) psychosocial stress experiences within the natural work environment, (2) micro-level work activities and events, and (3) physiological signals and behaviors in office workers. Methods: An Ecological Momentary Assessment (EMA) protocol has been developed, partly building on machine learning techniques. Empatica® wristbands will be used for real-life detection of stress from physiological signals; micro-level activities and events at work will be based on smartphone registrations, further processed according to an automated computer algorithm. A field study including 100 office-based workers with high-level problem-solving tasks like managers and researchers will be implemented in Slovenia and Belgium (50 in each country). Data mining and state-of-the-art statistical methods – mainly multilevel statistical modelling for repeated data – will be used. Expected Results and Impact: The project findings will provide novel contributions to the field of occupational health research. While traditional assessments provide information about global perceived state of chronic stress exposure, the EMA approach is expected to bring new insights about daily fluctuating work stress experiences, especially micro-level events and activities at work that induce acute physiological stress responses. The project is therefore likely to generate further evidence on relevant stressors in a real-time working environment and hence make it possible to advise on workplace procedures and policies for reducing stress.

Keywords: ecological momentary assessment, real-time, stress, work

Procedia PDF Downloads 161
8698 Pakistan Nuclear Security: Threats from Non-State Actors

Authors: Jennifer Wright

Abstract:

The recent rise of powerful terrorist groups such as ISIS and Al-Qaeda brings up concerns about nuclear terrorism as well as a focus on nuclear security, specifically the physical security of nuclear weapons and fissile material storage sites in countries where powerful nonstate actors are present. Particularly because these non-state actors, who lack their own sovereign territory, cannot be ‘deterred’ in the traditional sense. In light of the current threat environment, it’s necessary to now rethink these strategies in the 21st century – a multipolar world with the presence of powerful non-state actors. As a country in the spotlight for its low ranking on the Nuclear Threat Initiative’s (NTI) Nuclear Security Index, Pakistan is a relevant example to explore the question of whether the presence of non-state actors poses a real risk to nuclear security today. It’s necessary to take a look at their nuclear security policies to determine if they’re robust enough to deal with political instability and violence in the country. After carrying out interviews with experts in May 2017 in Islamabad on nuclear security and nuclear terrorism, this paper aims to highlight findings by providing a Pakistan-centric view on the subject and give experts there a chance to counter criticism. Western media would have us fearful of nuclear security mechanisms in Pakistan after reports that areas such as cybersecurity and accounting and control of materials are weak, as well as sensitive nuclear material being transported in unmarked, unguarded vehicles. Also reported are cases where terrorist groups carried out targeted attacks against Pakistani military bases or secure sites where nuclear material is stored. One specific question asked of each interviewee in Islamabad was Do you feel the threat of nuclear terrorism calls into question the reliance on deterrence? Their responses will be elaborated on in the longer paper, but overall they demonstrate views that deterrence still serves a purpose for state-to-state security strategy, but not for a state in countering nonstate threats. If nuclear security is lax enough for these non-state actors to get their hands on either an intact nuclear weapon or enough military-grade fissile material to build a nuclear weapon, then what would stop them from launching a nuclear attack? As deterrence is a state-centric strategy, it doesn’t work to deter non-state actors from carrying out an attack on another state, as they lack their own territory, and as such, are not fearful of a reprisal attack. Deterrence will need to be addressed, and its relevance analyzed to determine its utility in the current security environment. The aim of this research is to demonstrate the real risk of nuclear terrorism by pointing to weaknesses in global nuclear security, particularly in Pakistan. The research also aims to provoke thought on the weaknesses of deterrence as a whole. Original thinking is needed as we attempt to adequately respond to the 21st century’s current threat environment.

Keywords: deterrence, non-proliferation, nuclear security, nuclear terrorism

Procedia PDF Downloads 226
8697 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 23
8696 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 97
8695 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 176
8694 Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics

Authors: Orestis Κ. Efthymiou, Stavros T. Ponis

Abstract:

In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.

Keywords: Industry 4.0, internet of things, manufacturing systems, material handling, logistics

Procedia PDF Downloads 127
8693 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 170
8692 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells

Procedia PDF Downloads 589
8691 Migration, Assimilation and Well-Being of Interstate Migrant Workers in Kerala: A Critical Assessment

Authors: Arun Perumbilavil Anand

Abstract:

It may no longer be just anecdotal that every twelfth person in Kerala is a migrant worker from outside the state. For the past few years, the state has been witnessing large inflow of migrants from other states of India, which emerged as a result of demographic transition and Gulf emigration. Initially, the migrants were from the neighbouring states but, at a later period, the state started getting migrants from the distant parts of the country. Currently, migrants have turned to be a decisive force in the state and their increasing numbers have already started creating turbulences in the state. Over the past years, the increasing involvement of migrants in unlawful and criminal activities have generated apprehensions on their presence in the state. Moreover, at present, the Kerala society is not just hosting the first generation migrants, but there has been an increase in the second generation migrants making the situations more complex and diverse. In such a paradigm, the study ponders into the issues of migrants concerning their assimilation and well-being in the host society. Also, the study looks into the factors that impede the assimilation process, along with the perceptions of the migrants about the host society and the people. The study also tries to bring out the differences in the levels of assimilation among the migrants along the lines of religion, caste, state of origin, gender, stay duration and education. Methodology: The study is based on the empirical findings obtained out of the primary survey conducted on migrants employed in the Kanjikode industrial area of Kerala. The samples were selected through purposive sampling and the study employed techniques like observation, questionnaire and in-depth interviews. The findings are based on interviews conducted with 100 migrants. Findings and Conclusion: The study was an attempt of its kind in addressing the issues of assimilation and integration of interstate migrants working in the Kerala. As mentioned, the study could bring out differences in the levels of assimilation along the lines of different characteristics. The study could also locate the importance, and the role played by the peer groups and neighborhoods in accelerating the process of assimilation among the migrants. As an extension, the study also looked at the assimilation and educational issues of the migrant children living in Kerala, and it found that the place of birth, age at entry and the peer group plays a pivotal role in the assimilation process. The study through its findings recommends the need for incorporating the concept of inclusive education into the state educational system by giving due emphasis to the needs of the marginalized. The study points out that owing to the existing demographic conditions, the state will inevitably have to depend on migrant labor in future. Moreover, in such a paradigm, the host community and the government should strive to create a conducive environment for the proper assimilation of the migrants and which in turn can be an impetus for the fulfilment of the needs of both the migrants and the state.

Keywords: assimilation, integration, Kerala, migrant workers, well-being

Procedia PDF Downloads 144
8690 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 215
8689 A Review of Critical Factors in Budgetary Financing of Public Infrastructure in Nigeria

Authors: Akintayo Opawole, Godwin O. Jagboro

Abstract:

Research efforts on infrastructure development in Nigeria had not provided adequate assessment of issues essential for policy response by the government to address infrastructure deficiency. One major gap existing in previous studies is the assessment of challenges facing the budgetary financing model. Based on a case study of Osun State in Southwestern Nigeria, factors affecting budgetary financing of public infrastructure were identified from literature and brainstorming. Respondents were: 6 architects, 4 quantity surveyors, 6 town planners, 5 estate surveyors, 4 builders, 21 engineers and 26 economists/accountants ranging from principal to director who have been involved in policy making process with respect to infrastructure development in the public service of Osun state. The identified variables were subjected to factor analysis. The Kaiser-Meyer-Olkin measure of sampling adequacy tests carried out (KMO, 0.785) showed that the data collected were adequate for the analysis and the Bartlett’s test of sphericity (0.000) showed the data upon which the analysis was carried out was reliable. Results showed that factors such as poor collaboration between the state and local government establishments, absence of credible database system and inadequate funding of maintenance were the most significant to infrastructure development in the State. Policy responses to address challenges of infrastructure development in the state were identified to focus on creation of legal framework for liberation policy, enforcement of ‘due process’ in the procurement and establishment of monitoring system for project delivery.

Keywords: development, infrastructure, financing, procurement

Procedia PDF Downloads 411
8688 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
8687 Government Credit Card in State Financial Management: Public Sector Innovation in Indonesia

Authors: Paramita Nur Kurniati, Stanislaus Riyanta

Abstract:

In the midst of the heightened usage of electronic money (e-money), Indonesian government expenditure is yet governed through cash-basis transactions. This conventional system brings about a number of potential risks and obstacles to operational conduct, including state financial liquidity issue. Consequently, Ministry of Finance is currently establishing the cashless payment methods for State Budget (APBN). Included in those advance methods is credit card facility as a government expenditure payment scheme. This policy is one of the innovations within the public sector learned from other countries’ best practices. Moreover, this particular method is already prominent within the private-sector realm. Qualitative descriptive analysis technique is implemented to evaluate the contemporary innovation of using government credit card in the path towards cashless society. This approach is expected to generate several benefits for the government, particularly in minimizing corruption within the state financial management. Effective coordination among policy makers and policy implementers is essential for the success of this policy’s exercise, without neglecting prudence and public transparency aspects. Government credit card usage shall be the potent resolution for enhancing the government’s overall public service performance.

Keywords: cashless basis, cashless society, government credit card, public sector innovation

Procedia PDF Downloads 149
8686 Techniques to Characterize Subpopulations among Hearing Impaired Patients and Its Impact for Hearing Aid Fitting

Authors: Vijaya K. Narne, Gerard Loquet, Tobias Piechowiak, Dorte Hammershoi, Jesper H. Schmidt

Abstract:

BEAR, which stands for better hearing rehabilitation is a large-scale project in Denmark designed and executed by three national universities, three hospitals, and the hearing aid industry with the aim to improve hearing aid fitting. A total of 1963 hearing impaired people were included and were segmented into subgroups based on hearing-loss, demographics, audiological and questionnaires data (i.e., the speech, spatial and qualities of hearing scale [SSQ-12] and the International Outcome Inventory for Hearing-Aids [IOI-HA]). With the aim to provide a better hearing-aid fit to individual patients, we applied modern machine learning techniques with traditional audiograms rule-based systems. Results show that age, speech discrimination scores, and audiogram configurations were evolved as important parameters in characterizing sub-population from the data-set. The attempt to characterize sub-population reveal a clearer picture about the individual hearing difficulties encountered and the benefits derived from more individualized hearing aids.

Keywords: hearing loss, audiological data, machine learning, hearing aids

Procedia PDF Downloads 154