Search results for: microwave-assisted air drying processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4131

Search results for: microwave-assisted air drying processing

2931 Design and Implementation of Collaborative Editing System Based on Physical Simulation Engine Running State

Authors: Zhang Songning, Guan Zheng, Ci Yan, Ding Gangyi

Abstract:

The application of physical simulation engines in collaborative editing systems has an important background and role. Firstly, physical simulation engines can provide real-world physical simulations, enabling users to interact and collaborate in real time in virtual environments. This provides a more intuitive and immersive experience for collaborative editing systems, allowing users to more accurately perceive and understand various elements and operations in collaborative editing. Secondly, through physical simulation engines, different users can share virtual space and perform real-time collaborative editing within it. This real-time sharing and collaborative editing method helps to synchronize information among team members and improve the efficiency of collaborative work. Through experiments, the average model transmission speed of a single person in the collaborative editing system has increased by 141.91%; the average model processing speed of a single person has increased by 134.2%; the average processing flow rate of a single person has increased by 175.19%; the overall efficiency improvement rate of a single person has increased by 150.43%. With the increase in the number of users, the overall efficiency remains stable, and the physical simulation engine running status collaborative editing system also has horizontal scalability. It is not difficult to see that the design and implementation of a collaborative editing system based on physical simulation engines not only enriches the user experience but also optimizes the effectiveness of team collaboration, providing new possibilities for collaborative work.

Keywords: physics engine, simulation technology, collaborative editing, system design, data transmission

Procedia PDF Downloads 83
2930 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 128
2929 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: idea ontology, innovation management, semantic search, open information extraction

Procedia PDF Downloads 187
2928 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 158
2927 A Study of Influence of Freezing on Mechanical Properties of Tendon Fascicles

Authors: Martyna Ekiert, Andrzej Mlyniec

Abstract:

Tendons are the biological structures, which primary function is to transfer force generated by muscles to the bones. Unfortunately, damages of tendons are also one of the most common injuries of the human musculoskeletal system. For the most severe cases of tendon rupture, such as the tear of calcaneus tendon or anterior cruciate ligament of the knee, a surgical procedure is the only possible way of full recovery. Tendons used as biological grafts are usually subjected to the process of deep freezing and subsequent thawing. This, in particular for multiple freezing/thawing cycles, may result in changes of tendon internal structure causing deterioration of mechanical properties of the tissue. Therefore, studies on the influence of freezing on tendons biomechanics, including internal water content in soft tissue, seems to be greatly needed. An experimental study of the influence of freezing on mechanical properties of the tendon was performed on fascicles samples dissected form bovine flexor tendons. The preparation procedure was performed with the presence of 0.9% saline solution in order to prevent an excessive tissue drying. All prepared samples were subjected to the different number of freezing/thawing cycles. For freezing part of the protocol we used -80°C temperature while for slow thawing we used fridge temperature (4°C) combined with equalizing temperatures in the standard state (25°C). After final thawing, the mechanical properties of each sample was examined using cyclic loading test. Our results may contribute for better understanding of negative effects of soft tissues freezing, resulting from abnormal thermal expansion of water. This also may help to determine the limit of freezing/thawing cycles disqualifying tissue for surgical purposes and thus help optimize tissues storage conditions.

Keywords: freezing, soft tissue, tendon, bovine fascicles

Procedia PDF Downloads 218
2926 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 204
2925 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 333
2924 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 588
2923 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc

Authors: V. K. Gupta, Tejeet Singh

Abstract:

In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.

Keywords: anisotropy, creep, functionally graded composite, rotating disc

Procedia PDF Downloads 388
2922 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 75
2921 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 146
2920 How to Talk about It without Talking about It: Cognitive Processing Therapy Offers Trauma Symptom Relief without Violating Cultural Norms

Authors: Anne Giles

Abstract:

Humans naturally wish they could forget traumatic experiences. To help prevent future harm, however, the human brain has evolved to retain data about experiences of threat, alarm, or violation. When given compassionate support and assistance with thinking helpfully and realistically about traumatic events, most people can adjust to experiencing hardships, albeit with residual sad, unfortunate memories. Persistent, recurrent, intrusive memories, difficulty sleeping, emotion dysregulation, and avoidance of reminders, however, may be symptoms of Post-traumatic Stress Disorder (PTSD). Brain scans show that PTSD affects brain functioning. We currently have no physical means of restoring the system of brain structures and functions involved with PTSD. Medications may ease some symptoms but not others. However, forms of "talk therapy" with cognitive components have been found by researchers to reduce, even resolve, a broad spectrum of trauma symptoms. Many cultures have taboos against talking about hardships. Individuals may present themselves to mental health care professionals with severe, disabling trauma symptoms but, because of cultural norms, be unable to speak about them. In China, for example, relationship expectations may include the belief, "Bad things happening in the family should stay in the family (jiāchǒu bùkě wàiyán 家丑不可外扬)." The concept of "family (jiā 家)" may include partnerships, close and extended families, communities, companies, and the nation itself. In contrast to many trauma therapies, Cognitive Processing Therapy (CPT) for Post-traumatic Stress Disorder asks its participants to focus not on "what" happened but on "why" they think the trauma(s) occurred. The question "why" activates and exercises cognitive functioning. Brain scans of individuals with PTSD reveal executive functioning portions of the brain inadequately active, with emotion centers overly active. CPT conceptualizes PTSD as a network of cognitive distortions that keep an individual "stuck" in this under-functioning and over-functioning dynamic. Through asking participants forms of the question "why," plus offering a protocol for examining answers and relinquishing unhelpful beliefs, CPT assists individuals in consciously reactivating the cognitive, executive functions of their brains, thus restoring normal functioning and reducing distressing trauma symptoms. The culturally sensitive components of CPT that allow people to "talk about it without talking about it" may offer the possibility for worldwide relief from symptoms of trauma.

Keywords: cognitive processing therapy (CPT), cultural norms, post-traumatic stress disorder (PTSD), trauma recovery

Procedia PDF Downloads 212
2919 Geographic Information System and Dynamic Segmentation of Very High Resolution Images for the Semi-Automatic Extraction of Sandy Accumulation

Authors: A. Bensaid, T. Mostephaoui, R. Nedjai

Abstract:

A considerable area of Algerian lands is threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mecheria department generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of LANDSAT images (5, 7, and 8) of three scenes 197/37, 198/36 and 198/37 for the year 2020. As a second step, we prospect the use of geospatial techniques to monitor the progression of sand dunes on developed (urban) lands as well as on the formation of sandy accumulations (dune, dunes fields, nebkha, barkhane, etc.). For this purpose, this study made use of the semi-automatic processing method for the dynamic segmentation of images with very high spatial resolution (SENTINEL-2 and Google Earth). This study was able to demonstrate that urban lands under current conditions are located in sand transit zones that are mobilized by the winds from the northwest and southwest directions.

Keywords: land development, GIS, segmentation, remote sensing

Procedia PDF Downloads 152
2918 Effects of Varying Fermentation Periods on the Chemical Composition of African Yam Bean (Sphenostylis stenocarpa) and Acha (Digitaria exilis) Flour Blends and Sensory Properties of Their Products

Authors: P. N. Okeke, J. N. Chikwendu

Abstract:

The study evaluated the effects of varying fermentation periods on the nutrients and anti-nutrients composition of African yam bean (Sphenostylis stenocarpa) and acha (Digitaria exilis) flour blends and sensory properties of their products. The African yam bean seeds and acha grains were fermented for 24 hrs, 48 and 72 hrs, dried (sun drying) and milled into fine flour. The fermented flours were used in a ratio of 70:30 (Protein basis) to formulate composite flour for meat pie and biscuits production. Both the fermented and unfermented flours and products were analyzed for chemical composition using the standard method. The data were statistically analyzed using SPSS version 15 to determine the mean and standard deviation. The 24, 48, and 72 hrs fermentation periods increased protein (22.81, 26.15 and 24.00% respectively). The carbohydrate, ash and moisture contents of the flours were also increased as a result of fermentation (68.01-76.83, 2.26-4.88, and 8.36-13.00% respectively). The 48 hrs fermented flour blends had the highest increase in ash relative to the control (4.88%). Fermentation increased zinc, iron, magnesium and phosphorus content of the flours. Treatment drastically reduced the anti-nutrient (oxalate, saponin, tannin, phytate, and hemagglutinin) levels of the flours. Both meat pie and biscuits had increased protein relative to the control (27.36-34.28% and 23.66-25.09%). However, the protein content of the meat pie increased more than that of the biscuits. Zinc, Iron, Magnesium and phosphorus levels increased in both meat pie and biscuits. Organoleptic attributes of the products (meat pie and biscuits) were slightly lower than the control except those of the 72 hrs fermented flours.

Keywords: fermentation, African yam bean, acha, biscuits, meat-pie

Procedia PDF Downloads 275
2917 Challenges That People with Autism and Caregivers Face in Public Environments

Authors: Andrei Pomana, Graham Brewer

Abstract:

Autism is a lifelong developmental disorder that affects verbal and non-verbal communication, behaviour and sensory processing. As a result, people on the autism spectrum have a difficult time when confronted with environments that have high levels of sensory stimulation. This is often compounded by the inability to properly communicate their wants and needs to caregivers. The capacity for people with autism to integrate depends on their ability to at least tolerate highly stimulating public environments for short periods of time. The overall challenges that people on the spectrum and their caregivers face need to be established in order to properly create and assess methods to mitigate the effects of high stimulus public spaces. The paper aims to identify the challenges that people on the autism spectrum and their caregivers face in typical public environments. Nine experienced autism therapists have participated in a semi-structured interview regarding the challenges that people with autism and their caregivers face in public environments. The qualitative data shows that the unpredictability of events and the high sensory stimulation present in public environments, especially auditory, are the two biggest contributors to the difficulties that people on the spectrum face. If the stimuli are not removed in a short period of time, uncontrollable behaviours or 'meltdowns' can occur, which leave the person incapacitated and unable to respond to any outside input. Possible solutions to increase integration in public spaces for people with autism revolve around removing unwanted sensory stimulus, creating personalized barriers for certain stimuli, equipping people with autism with better tools to communicate their needs or to orient themselves to a safe location and providing a predictable pattern of events that would prepare individuals for tasks ahead of time.

Keywords: autism, built environment, meltdown, public environment, sensory processing disorders

Procedia PDF Downloads 162
2916 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine

Procedia PDF Downloads 309
2915 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 137
2914 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential

Authors: Rasheed Amao Busari, Ahmed Ibrahim

Abstract:

The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.

Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit

Procedia PDF Downloads 74
2913 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 307
2912 The Effect of an Abnormal Prefrontal Cortex on the Symptoms of Attention Deficit/Hyperactivity Disorder

Authors: Irene M. Arora

Abstract:

Hypothesis: Attention Deficit Hyperactivity Disorder is the result of an underdeveloped prefrontal cortex which is the primary cause for the signs and symptoms seen as defining features of ADHD. Methods: Through ‘PubMed’, ‘Wiley’ and ‘Google Scholar’ studies published between 2011-2018 were evaluated, determining if a dysfunctional prefrontal cortex caused the characteristic symptoms associated with ADHD. The search terms "prefrontal cortex", "Attention-Deficit/Hyperactivity Disorder", "cognitive control", "frontostriatal tract" among others, were used to maximize the assortment of relevant studies. Excluded papers were systematic reviews, meta-analyses and publications published before 2010 to ensure clinical relevance. Results: Nine publications were analyzed in this review, all of which were non-randomized matched control studies. Three studies found a decrease in the functional integrity of the frontostriatal tract fibers in conjunction with four studies finding impaired frontal cortex stimulation. Prefrontal dysfunction, specifically medial and orbitofrontal areas, displayed abnormal functionality of reward processing in ADHD patients when compared to their normal counterparts. A total of 807 subjects were studied in this review, yielding that a little over half (54%) presented with remission of symptoms in adulthood. Conclusion: While the prefrontal cortex shows the highest consistency of impaired activity and thinner volumes in patients with ADHD, this is a heterogenous disorder implicating its pathophysiology to the dysfunction of other neural structures as well. However, remission of ADHD symptomatology in adulthood was found to be attributable to increased prefrontal functional connectivity and integration, suggesting a key role for the prefrontal cortex in the development of ADHD.

Keywords: prefrontal cortex, ADHD, inattentive, impulsivity, reward processing

Procedia PDF Downloads 118
2911 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications

Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra

Abstract:

Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.

Keywords: granular beds, numerical models, rotary kilns, solar thermal applications

Procedia PDF Downloads 30
2910 The Importance of Storage Period on Biogas Potential of Cattle Manure

Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim

Abstract:

Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.

Keywords: storage period, cattle manure, biogas potential, microbial analysis

Procedia PDF Downloads 170
2909 For Post-traumatic Stress Disorder Counselors in China, the United States, and around the Globe, Cultural Beliefs Offer Challenges and Opportunities

Authors: Anne Giles

Abstract:

Trauma is generally defined as an experience, or multiple experiences, overwhelming a person's ability to cope. Over time, many people recover from the neurobiological, physical, and emotional effects of trauma on their own. For some people, however, troubling symptoms develop over time that can result in distress and disability. This cluster of symptoms is classified as Post-traumatic Stress Disorder (PTSD). People who meet the criteria for PTSD and other trauma-related disorder diagnoses often hold a set of understandable but unfounded beliefs about traumatic events that cause undue suffering. Becoming aware of unhelpful beliefs—termed "cognitive distortions"—and challenging them is the realm of Cognitive Behavior Therapy (CBT). A form of CBT found by researchers to be especially effective for PTSD is Cognitive Processing Therapy (CPT). Through the compassionate use of CPT, people identify, examine, challenge, and relinquish unhelpful beliefs, thereby reducing symptoms and suffering. Widely-held cultural beliefs can interfere with the progress of recovery from trauma-related disorders. Although highly revered, largely unquestioned, and often stabilizing, cultural beliefs can be founded in simplistic, dichotomous thinking, i.e., things are all right, or all wrong, all good, or all bad. The reality, however, is nuanced and complex. After studying examples of cultural beliefs from China and the United States and how these might interfere with trauma recovery, trauma counselors can help clients derive criteria for preserving helpful beliefs, discover, examine, and jettison unhelpful beliefs, reduce trauma symptoms, and live their lives more freely and fully.

Keywords: cognitive processing therapy (CPT), cultural beliefs, post-traumatic stress disorder (PTSD), trauma recovery

Procedia PDF Downloads 248
2908 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus

Authors: Linnan Zhang

Abstract:

Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.

Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality

Procedia PDF Downloads 197
2907 Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy

Authors: Surabhi Pandey, Pavuluri Srinivasa Rao

Abstract:

Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates.

Keywords: extrusion, FTIR, protein conformation, raw banana flour, SDS-PAGE method

Procedia PDF Downloads 160
2906 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 79
2905 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix

Authors: S. Bouameur, S. Chirani

Abstract:

The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.

Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol

Procedia PDF Downloads 360
2904 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 88
2903 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns

Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue

Abstract:

With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.

Keywords: historic districts, color planning, semantic segmentation, natural language processing

Procedia PDF Downloads 87
2902 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 116