Search results for: game outcome prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4760

Search results for: game outcome prediction

3560 Influence of Social Media on Perceived Learning Outcome of Agricultural Students in Tertiary Institutions in Oyo State, Nigeria

Authors: Adedoyin Opeyemi Osokoya

Abstract:

The study assesses the influence of social media on perceived learning outcome of agricultural science students in tertiary institutions in Oyo state, Nigeria. The four-stage sampling procedure was used to select participants. All students in the seven tertiary institutions that offer agriculture science as a course of study in Oyo State was the population. A university, a college of agriculture and a college of education were sampled, and a department from each was randomly selected. Twenty percent of the students’ population in the respective selected department gave a sample size of 165. Questionnaire was used to collect information on respondents’ personal characteristics and information related to access to social media. Data were analysed using descriptive statistics, chi-square, correlation, and multiple regression at the 0.05 confidence level. Age and household size were 21.13 ± 2.64 years and 6 ± 2.1 persons respectively. All respondents had access to social media, majority (86.1%) owned Android phone, 57.6% and 52.7% use social media for course work and entertainment respectively, while the commonly visited sites were WhatsApp, Facebook, Google, Opera mini. Over half (53.9%) had an unfavourable attitude towards the use of social media for learning; benefits of the use of social media for learning was high (56.4%). Removal of information barrier created by distance (x̄=1.58) was the most derived benefit, while inadequate power supply (x̄=2.36), was the most severe constraints. Age (β=0.23), sex (β=0.37), ownership of Android phone (β=-1.29), attitude (β=0.37), constraints (β =-0.26) and use of social media (β=0.23) were significant predictors of influence on perceived learning outcomes.

Keywords: use of social media, agricultural science students, undergraduates of tertiary institutions, Oyo State of Nigeria

Procedia PDF Downloads 140
3559 Escalation of Commitment and Turnover in Top Management Teams

Authors: Dmitriy V. Chulkov

Abstract:

Escalation of commitment is defined as continuation of a project after receiving negative information about it. While literature in management and psychology identified various factors contributing to escalation behavior, this phenomenon has received little analysis in economics, potentially due to the apparent irrationality of escalation. In this study, we present an economic model of escalation with asymmetric information in a principal-agent setup where the agents are responsible for a project selection decision and discover the outcome of the project before the principal. Our theoretical model complements the existing literature on several accounts. First, we link the incentive to escalate commitment to a project with the turnover decision by the manager. When a manager learns the outcome of the project and stops it that reveals that a mistake was made. There is an incentive to continue failing projects and avoid admitting the mistake. This incentive is enhanced when the agent may voluntarily resign from the firm before the outcome of the failing project is revealed, and thus not bear the full extent of reputation damage due to project failure. As long as some successful managers leave the firm for extraneous reasons, outside firms find it difficult to link failing projects with certainty to managers that left a firm. Second, we demonstrate that non-CEO managers have reputation concerns separate from those of the CEO, and thus may escalate commitment to projects they oversee, when such escalation can attenuate damage to reputation from impending project failure. Such incentive for escalation will be present for non-CEO managers if the CEO delegates responsibility for a project to a non-CEO executive. If reputation matters for promotion to the CEO, the incentive for a rising executive to escalate in order to protect reputation is distinct from that of a CEO. Third, our theoretical model is supported by empirical analysis of changes in the firm’s operations measured by the presence of discontinued operations at the time of turnover among the top four members of the top management team. Discontinued operations are indicative of termination of failing projects at a firm. The empirical results demonstrate that in a large dataset of over three thousand publicly traded U.S. firms for a period from 1993 to 2014 turnover by top executives significantly increases the likelihood that the firm discontinues operations. Furthermore, the type of turnover matters as this effect is strongest when at least one non-CEO member of the top management team leaves the firm and when the CEO departure is due to a voluntary resignation and not to a retirement or illness. Empirical results are consistent with the predictions of the theoretical model and suggest that escalation of commitment is primarily observed in decisions by non-CEO members of the top management team.

Keywords: discontinued operations, escalation of commitment, executive turnover, top management teams

Procedia PDF Downloads 365
3558 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 370
3557 People Abandoning Mobile Social Games: Using Candy Crush Saga as an Example

Authors: Pei-Shan Wei, Szu-Ying Lee, Hsi-Peng Lu, Jen-Chuen Tzou, Chien-I Weng

Abstract:

Mobile social games recently become extremely popular, spawning a whole new entertainment culture. However, mobile game players are fickle, quickly and easily picking up and abandoning games. This pilot study seeks to identify factors that influence users to discontinue playing mobile social games. We identified three sacrifices which can prompt users to abandon games: monetary sacrifice, time sacrifice and privacy sacrifice. The results showed that monetary sacrifice has a greater impact than the other two factors in causing players to discontinue usage intention.

Keywords: abandon, mobile devices, mobile social games, perceived sacrifice

Procedia PDF Downloads 496
3556 Acute Kidney Injury in Severe Trauma Patients: Clinical Presentation and Risk Factor Analysis

Authors: Inkyong Yi

Abstract:

Acute kidney injury (AKI) in trauma patients is known to be associated with multiple factors, especially shock and consequent inadequate renal perfusion, yet its clinical presentation is little known in severe trauma patients. Our aim was to investigate the clinical presentation of acute kidney injury and its outcome in severe trauma patients at a level I trauma center. A total of 93 consecutive adult trauma patients with an injury severity score (ISS) of more than 15 were analyzed retrospectively from our Level I trauma center data base. Patients with direct renal injury were excluded. Patients were dichotomized into two groups, according to the presence of AKI. Various clinical parameters were compared between two groups, with Student’s T test and Mann-Whitney’s U test. The AKI group was further dichotomized into patients who recovered within seven days, and those who required more than 7days for recovery or those who did not recover at all. Various clinical parameters associated with outcome were further analyzed. Patients with AKI (n=33, 35%) presented with significantly higher age (61.4±17.3 vs. 45.4±17.3, p < 0.0001), incidence of comorbidities (hypertension; 51.5% vs. 13.3%, OR 6.906 95%CI 2.515-18.967, diabetes; 27.3% vs. 6.7%, OR 5.250, 95%CI 1.472-18.722), odds of head and neck trauma (69.7% vs. 41.7%, OR 3.220, 95%CI 1.306-7.942) and presence of shock during emergency room care (66.7% vs 21.7% OR 7.231, 95%CI, 2.798-18.687). Among AKI patients, patients who recovered within 1 week showed lower peak lactate (4.7mmol/L, 95%CI 2.9-6.5 vs 7.3mmol/L, 95%CI 5.0-9.6, p < 0.0287), lesser units of transfusion during first 24 hours (pRBC; 20.4unit, 95%CI 12.5-28.3 vs. 58.9unit, 95%CI 39.4-78.5, p=0.0003, FFP; 16.6unit, 95%CI 6.8-26.4 vs. 56.1unit, 95%CI 26.9-85.2, p=0.0027). In severe trauma patients, patients with AKI showed different clinical presentations and worse outcomes. Initial presence of shock and higher DIC profiles may be important risk factors for AKI in severe trauma patients. In patients with AKI, peak lactate level and amounts of transfusion are related to recovery.

Keywords: acute kidney injury, lactate, transfusion, trauma

Procedia PDF Downloads 203
3555 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneuver modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in ground track as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.

Keywords: flight dynamics system, orbit propagation, satellite ephemeris, Thailand’s Earth Observation Satellite

Procedia PDF Downloads 377
3554 Prognostic Implication of Nras Gene Mutations in Egyptian Adult Acute Myeloid Leukemia

Authors: Doaa M. Elghannam, Nashwa Khayrat Abousamra, Doaa A. Shahin, Enas F. Goda, Hanan Azzam, Emad Azmy, Manal Salah El-Din

Abstract:

Background: The pathogenesis of acute myeloid leukemia (AML) involves the cooperation of mutations promoting proliferation/survival and those impairing differentiation. Point mutations of the NRAS gene are the most frequent somatic mutations causing aberrant signal-transduction in acute myeloid leukemia (AML). Aim: The present work was conducted to study the frequency and prognostic significance of NRAS gene mutations (NRASmut) in de novo Egyptian adult AML. Material and methods: Bone marrow specimens from 150 patients with de novo acute myeloid leukemia and controls were analyzed by genomic PCR-SSCP at codons 12, 13 (exon 1), and 61 (exon 2) for NRAS mutations. Results: NRAS gene mutations was found in 19/150 (12.7%) AML cases, represented more frequently in the FAB subtype M4eo (P = 0.028), and at codon 12, 13 (14of 19; 73.7%). Patients with NRASmut had a significant lower peripheral marrow blasts (P = 0.004, P=0.03) and non significant improved clinical outcome than patients without the mutation. Complete remission rate was (63.2% vs 56.5%; p=0.46), resistant disease (15.8% vs 23.6%; p=0.51), three years overall survival (44% vs 42%; P = 0.85) and disease free survival (42.1% vs 38.9%, P = 0.74). Multivariate analysis showed that age was the strongest unfavorable factor for overall survival (relative risk [RR], 1.9; P = .002), followed by cytogenetics (P = .004). FAB types, NRAS mutation, and leukocytosis were less important. Conclusions: NRAS gene mutation frequency and spectrum differ between biologically distinct subtypes of AML but do not significantly influence prognosis and clinical outcome.

Keywords: NRAS Gene, egyptian adult, acute myeloid leukemia, cytogenetics

Procedia PDF Downloads 99
3553 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 20
3552 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study

Authors: Anurag Tripathi, Sanad Khandelwal

Abstract:

Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.

Keywords: forensic, dental age, pulp volume, cone beam computed tomography

Procedia PDF Downloads 99
3551 Outcome of Dacryocystorhinostomy with Peroperative Local Use of Mitomycin-C

Authors: Chandra Shekhar Majumder, Orin Sultana Jamie

Abstract:

Background: Dacryocystorhinostomy (DCR) has been a widely accepted surgical intervention for nasolacrimal duct obstructions. Some previous studies demonstrated the potential benefits of the peroperative application of agents like Mitomycin-C (MMC) with DCR to improve surgical outcomes. Relevant studies are rare in Bangladesh, and there are controversies about the dose, duration of MMC, and outcome. Therefore, the present study aimed to investigate the comparative efficacy of DCR with and without MMC in a tertiary hospital in Bangladesh. Objective: The study aims to determine the outcome of a dacryocystorhinostomy with preoperative local use of mitomycin–C. Methods: An analytical study was conducted in the Department of Ophthalmology, Sir Salimullah Medical College & Mitford Hospital, Dhaka, from January 2023 to September 2023. Seventy patients who were admitted for DCR operation were included according to the inclusion and exclusion criteria. Patients were divided into two groups: those who underwent DCR with peroperative administration of 0.2 mg/ml Mitomycin-C for 5 minutes (Group I) and those who underwent DCR alone (Group II). All patients were subjected to detailed history taking, clinical examination, and relevant investigations. All patients underwent DCR according to standard guidelines and ensured the highest peroperative and postoperative care. Then, patients were followed up at 7th POD, 1-month POD, 3 months POD, and 6 months POD to observe the success rate between the two groups by assessing tearing condition, irrigation, height of tear meniscus, and FDDT- test. Data was recorded using a pre-structured questionnaire, and collected data were analyzed using SPSS 23. Results: The mean age of the study patients was 42.17±6.7 (SD) years and 42.29±7.1 (SD) years in Groups I and II, respectively, with no significant difference (p=0.945). At the 6th month’s follow-up, group I patients were observed with 94.3% frequency of symptom-free, 85.6% patency of lacrimal drainage system, 68.6% had tear meniscus <0.1mm and 88.6% had positive Fluorescence Dye Disappearance Test (FDDT test). In group II, 91.4% were symptom-free, 68.6% showed patency, 57.1% had a height of tear meniscus < 0.1 mm, and 85.6% had FDDT test positive. But no statistically significant difference was observed (p<.05). Conclusion: The use of Mitomycin-C preoperatively during DCR offers better postoperative outcomes, particularly in maintaining patency and achieving symptom resolution with more FDDT test positive and improvement of tear meniscus in the MMC group than the control group. However, this study didn’t demonstrate a statistically significant difference between the two groups. Further research with larger sample sizes and longer follow-up periods would be beneficial to corroborate these findings.

Keywords: dacryocystorhinostomy, mitomycin-c, dacryocystitis, nasolacrimal duct obstruction

Procedia PDF Downloads 45
3550 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 152
3549 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 87
3548 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables

Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez

Abstract:

Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.

Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X

Procedia PDF Downloads 264
3547 Integrating Historical Narratives with Merge Games as Tools for Pedagogy In Education

Authors: Aathira H.

Abstract:

Digital games can act as catalysts for educational transformation in the current scenario. Children and adolescence acquire this digital knowledge quickly and hence digital games can act as one of the most effective media for technology-mediated learning. Mobile gaming industries have seen the rise of a new trending genre of games, i.e., “Merge games” which is currently thriving in the market. This paper analysis on how gamifying historic and cultural narratives with merge mechanics can be an effective way to educate school children. Through the study of how merge mechanics in games have currently emerged as a trend., this paper argues how it can be integrated with a strong narrative which can convey history in an engaging way for education.

Keywords: game-based learning, merge mechanics, historical narratives, gaming innovations

Procedia PDF Downloads 104
3546 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
3545 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 44
3544 Surgical Outcomes of Lung Cancer Surgery in Tasmania

Authors: Ayeshmanthe Rathnayake, Ashutosh Hardikar

Abstract:

Introduction: Lung cancer is the most common cause of cancer death in Australia, with more than 13000 cases per year. Until now, there has been a major deficiency of national comprehensive thoracic surgery data. The thoracic workload for surgeons as well as caseload per unit, is highly variable, with some centres performing less than 15 cases per annum, thus raising concerns about optimal care at low-volume sites. This is an attempt to review the outcomes of lung cancer surgery in Tasmania. Method: The objective of this study is to determine the surgical outcomes of lung cancer surgery at Royal Hobart Hospital (RHH) with the primary outcome of surgical mortality. Four hundred fifty-one cases were analysed retrospectively from 2010 to May 2022. Results: A total of 451 patients underwent thoracic surgery with a primary diagnosis of lung cancer. The primary outcome of 30-day mortality was <0.5%. The mean age was 65.3 years, with male predominance and a 4.2% prevalence of Indigenous Australians. The mean LOS was 7.5 days. The surgical approach was either VATS (50.3%) or Thoracotomy (49.7%), with a trend towards the former in recent years with an increase in the proportion of VATS from 18.2% to 51% (p<0.05) in complex resections since 2019. A corresponding reduction in conversion rate to open was observed (18% vs. 5.5%), and there were no deaths within this subgroup. Lung resections were divided into lobectomy (55.4%), wedge resection (36.8%), segmentectomy (2.9%) and pneumonectomy (4.9%). The RHH demonstrates good surgical outcomes for lung cancer and provides a sustainable service for Tasmania. Conclusion: This retrospective study reports the surgical outcomes of lung cancer surgery at the Royal Hobart Hospital, thereby providing insight into the surgical management of lung cancer in the state thus far. The state has been slow to catch up on the minimally invasive program, but the overall results have been comparable to most peers.

Keywords: lung cancer, thoracic surgery, lung resection, surgical outcomes

Procedia PDF Downloads 97
3543 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs

Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello

Abstract:

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.

Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction

Procedia PDF Downloads 451
3542 Festival Gamification: Conceptualization and Scale Development

Authors: Liu Chyong-Ru, Wang Yao-Chin, Huang Wen-Shiung, Tang Wan-Ching

Abstract:

Although gamification has been concerned and applied in the tourism industry, limited literature could be found in tourism academy. Therefore, to contribute knowledge in festival gamification, it becomes essential to start by establishing a Festival Gamification Scale (FGS). This study defines festival gamification as the extent of a festival to involve game elements and game mechanisms. Based on self-determination theory, this study developed an FGS. Through the multi-study method, in study one, five FGS dimensions were sorted through literature review, followed by twelve in-depth interviews. A total of 296 statements were extracted from interviews and were later narrowed down to 33 items under six dimensions. In study two, 226 survey responses were collected from a cycling festival for exploratory factor analysis, resulting in twenty items under five dimensions. In study three, 253 survey responses were obtained from a marathon festival for confirmatory factor analysis, resulting in the final sixteen items under five dimensions. Then, results of criterion-related validity confirmed the positive effects of these five dimensions on flow experience. In study four, for examining the model extension of the developed five-dimensional 16-item FGS, which includes dimensions of relatedness, mastery, competence, fun, and narratives, cross-validation analysis was performed using 219 survey responses from a religious festival. For the tourism academy, the FGS could further be applied in other sub-fields such as destinations, theme parks, cruise trips, or resorts. The FGS serves as a starting point for examining the mechanism of festival gamification in changing tourists’ attitudes and behaviors. Future studies could work on follow-up studies of FGS by testing outcomes of festival gamification or examining moderating effects of enhancing outcomes of festival gamification. On the other hand, although the FGS has been tested in cycling, marathon, and religious festivals, the research settings are all in Taiwan. Cultural differences of FGS is another further direction for contributing knowledge in festival gamification. This study also contributes to several valuable practical implications. First, this FGS could be utilized in tourist surveys for evaluating the extent of gamification of a festival. Based on the results of the performance assessment by FGS, festival management organizations and festival planners could learn the relative scores among dimensions of FGS, and plan for future improvement of gamifying the festival. Second, the FGS could be applied in positioning a gamified festival. Festival management organizations and festival planners could firstly consider the features and types of their festival, and then gamify their festival based on investing resources in key FGS dimensions.

Keywords: festival gamification, festival tourism, scale development, self-determination theory

Procedia PDF Downloads 147
3541 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
3540 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 234
3539 A Randomized Control Trial Intervention to Combat Childhood Obesity in Negeri Sembilan: The Hebat! Program

Authors: Siti Sabariah Buhari, Ruzita Abdul Talib, Poh Bee Koon

Abstract:

This study aims to develop and evaluate an intervention to improve eating habits, active lifestyle and weight status of overweight and obese children in Negeri Sembilan. The H.E.B.A.T! Program involved children, parents, and school and focused on behaviour and environment modification to achieve its goal. The intervention consists of H.E.B.A.T! Camp, parent’s workshop and school-based activities. A total of 21 children from intervention school and 22 children from control school who had BMI for age Z-score ≥ +1SD participated in the study. Mean age of subjects was 10.8 ± 0.3 years old. Four phases were included in the development of the intervention. Evaluation of intervention was conducted through process, impact and outcome evaluation. Process evaluation found that intervention program was implemented successfully with minimal modification and without having any technical problems. Impact and outcome evaluation was assessed based on dietary intake, average step counts, BMI for age z-score, body fat percentage and waist circumference at pre-intervention (T0), post-intervention 1 (T1) and post-intervention 2 (T2). There was significant reduction in energy (14.8%) and fat (21.9%) intakes (at p < 0.05) at post-intervention 1 (T1) in intervention group. By controlling for sex as covariate, there was significant intervention effect for average step counts, BMI for age z-score and waist circumference (p < 0.05). In conclusion, the intervention made an impact on positive behavioural intentions and improves weight status of the children. It is expected that the HEBAT! Program could be adopted and implemented by the government and private sector as well as policy-makers in formulating childhood obesity intervention.

Keywords: childhood obesity, diet, obesity intervention, physical activity

Procedia PDF Downloads 291
3538 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis

Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby

Abstract:

The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.

Keywords: component analysis, multivariate, slaughter, regression

Procedia PDF Downloads 165
3537 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department

Authors: Welawat Tienpratarn, Chaiyaporn Yuksen, Rungrawin Promkul, Chetsadakon Jenpanitpong, Pajit Bunta, Suthap Jaiboon

Abstract:

Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times. The clinical predictive score of > 6 was associated with recurrence PSVT in ED.

Keywords: supraventricular tachycardia, recurrance, emergency department, adenosine

Procedia PDF Downloads 117
3536 Exposure to Social Media Shared Video-Clips on Irregularities from the 2023 Election in Nigeria and Audience Perception of the Outcome

Authors: Obiakor Casmir Uchenna, Ikegbunam Peter Chierike, Ezeja Perpetual Chisom

Abstract:

Irregularities have been a major feature of the Nigerian political activities since 1999. The rate at which such impunities thrive in the country has made elections grossly unacceptable among the people because the outcomes have never reflected the wish of the masses. Conscious of this, citizens have subscribed to the use of social media in exposing the ugly faces of the country’s elections which have always been against the less privileged. This study is an exploration of the relationship between exposure to social media shared video-clips and the respondents’ perception of the 2023 presidential election in Nigeria. The general objective of the study is to find out what the respondents make of the election as a result of the video-clips shared on different social media platforms showing electoral irregularities. The study adopted survey research method in studying 378 university undergraduates from NAU, COOU and Paul University selected through purposive sampling technique. The study was premised on the theoretical provision of violation of expectation theory. Findings revealed that the respondents are well exposed to different video-clips showing irregularities on the election. It was also found that the respondents have negative perception of the election. It was concluded that electoral umpire, the government in power and the security apparatus violated the respondents’ expectation from the election based on the pre-election promises made to the citizens. It was recommended among others, that Nigeria must strengthen the various institutions responsible for the conduct of elections if violence will not be made the best option for the poor masses.

Keywords: social media shared video-clips, exposure, irregularities, elections, audience perception, outcome

Procedia PDF Downloads 60
3535 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier

Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das

Abstract:

For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.

Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification

Procedia PDF Downloads 107
3534 Multilevel Gray Scale Image Encryption through 2D Cellular Automata

Authors: Rupali Bhardwaj

Abstract:

Cryptography is the science of using mathematics to encrypt and decrypt data; the data are converted into some other gibberish form, and then the encrypted data are transmitted. The primary purpose of this paper is to provide two levels of security through a two-step process, rather than transmitted the message bits directly, first encrypted it using 2D cellular automata and then scrambled with Arnold Cat Map transformation; it provides an additional layer of protection and reduces the chance of the transmitted message being detected. A comparative analysis on effectiveness of scrambling technique is provided by scrambling degree measurement parameters i.e. Gray Difference Degree (GDD) and Correlation Coefficient.

Keywords: scrambling, cellular automata, Arnold cat map, game of life, gray difference degree, correlation coefficient

Procedia PDF Downloads 377
3533 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes

Authors: Sang-Woo Kim, Young-Seon Lee

Abstract:

An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.

Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test

Procedia PDF Downloads 373
3532 Detecting Anomalous Matches: An Empirical Study from National Basketball Association

Authors: Jacky Liu, Dulani Jayasuriya, Ryan Elmore

Abstract:

Match fixing and anomalous sports events have increasingly threatened the integrity of professional sports, prompting concerns about existing detection methods. This study addresses prior research limitations in match fixing detection, improving the identification of potential fraudulent matches by incorporating advanced anomaly detection techniques. We develop a novel method to identify anomalous matches and player performances by examining series of matches, such as playoffs. Additionally, we investigate bettors' potential profits when avoiding anomaly matches and explore factors behind unusual player performances. Our literature review covers match fixing detection, match outcome forecasting models, and anomaly detection methods, underscoring current limitations and proposing a new sports anomaly detection method. Our findings reveal anomalous series in the 2022 NBA playoffs, with the Phoenix Suns vs Dallas Mavericks series having the lowest natural occurrence probability. We identify abnormal player performances and bettors' profits significantly decrease when post-season matches are included. This study contributes by developing a new approach to detect anomalous matches and player performances, and assisting investigators in identifying responsible parties. While we cannot conclusively establish reasons behind unusual player performances, our findings suggest factors such as team financial difficulties, executive mismanagement, and individual player contract issues.

Keywords: anomaly match detection, match fixing, match outcome forecasting, problematic players identification

Procedia PDF Downloads 79
3531 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes

Authors: Haoming Ma, Guo Yu, Peiru Zhou

Abstract:

Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.

Keywords: diabetes, glycemic variability, predictors, severe disease

Procedia PDF Downloads 189