Search results for: data integrity and privacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25814

Search results for: data integrity and privacy

24614 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: general data protection regulation, human resource management, educational system

Procedia PDF Downloads 100
24613 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 157
24612 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment

Authors: P. Venu, Joeju M. Issac

Abstract:

Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.

Keywords: hybrid data handler, QFD, prioritization, module-based deployment

Procedia PDF Downloads 297
24611 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: classification, data mining, evaluation measures, groundwater

Procedia PDF Downloads 280
24610 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects

Authors: Mai Ghazal, Ahmed Hammad

Abstract:

Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.

Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management

Procedia PDF Downloads 370
24609 Sampling Error and Its Implication for Capture Fisheries Management in Ghana

Authors: Temiloluwa J. Akinyemi, Denis W. Aheto, Wisdom Akpalu

Abstract:

Capture fisheries in developing countries provide significant animal protein and directly supports the livelihoods of several communities. However, the misperception of biophysical dynamics owing to a lack of adequate scientific data has contributed to the suboptimal management in marine capture fisheries. This is because yield and catch potentials are sensitive to the quality of catch and effort data. Yet, studies on fisheries data collection practices in developing countries are hard to find. This study investigates the data collection methods utilized by fisheries technical officers within the four fishing regions of Ghana. We found that the officers employed data collection and sampling procedures which were not consistent with the technical guidelines curated by FAO. For example, 50 instead of 166 landing sites were sampled, while 290 instead of 372 canoes were sampled. We argue that such sampling errors could result in the over-capitalization of capture fish stocks and significant losses in resource rents.

Keywords: Fisheries data quality, fisheries management, Ghana, Sustainable Fisheries

Procedia PDF Downloads 92
24608 Context-Aware Alert Method in Hajj Pilgrim Location-Based Tracking System

Authors: Syarif Hidayat

Abstract:

As millions of people with different backgrounds perform hajj every year in Saudi Arabia, it brings out several problems. Missing people is among many crucial problems need to be encountered. Some people might have had insufficient knowledge of using tracking system equipment. Other might become a victim of an accident, lose consciousness, or even died, prohibiting them to perform certain activity. For those reasons, people could not send proper SOS message. The major contribution of this paper is the application of the diverse alert method in pilgrims tracking system. It offers a simple yet robust solution to send SOS message by pilgrims during Hajj. Knowledge of context aware computing is assumed herein. This study presents four methods that could be utilized by pilgrims to send SOS. The first method is simple mobile application contains only a button. The second method is based on behavior analysis based off GPS location movement anomaly. The third method is by introducing pressing pattern to smartwatch physical button as a panic button. The fourth method is by identifying certain accelerometer pattern recognition as a sign of emergency situations. Presented method in this paper would be an important part of pilgrims tracking system. The discussion provided here includes easy to use design whilst maintaining tracking accuracy, privacy, and security of its users.

Keywords: context aware computing, emergency alert system, GPS, hajj pilgrim tracking, location-based services

Procedia PDF Downloads 216
24607 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)

Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri

Abstract:

This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.

Keywords: JAX-WS, SMTP, SOAP, web service, XML

Procedia PDF Downloads 495
24606 Enhancing Healthcare Data Protection and Security

Authors: Joseph Udofia, Isaac Olufadewa

Abstract:

Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.

Keywords: cloud security, healthcare, cybersecurity, policy and standard

Procedia PDF Downloads 90
24605 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 296
24604 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines

Authors: K. Shaji Mon, P. R. John Sreenidhi

Abstract:

In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.

Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer

Procedia PDF Downloads 245
24603 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey

Authors: D. I. George Amalarethinam, A. Emima

Abstract:

Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.

Keywords: classification technique, data mining, EDM methods, prediction methods

Procedia PDF Downloads 117
24602 Psychological Perspectives on Modern Restaurant Interior Design Based on Traditional Elements (Case Study: Interior Design of the Mesineh Restaurant, Tehran, Iran)

Authors: Raheleh Saifiabolhassan

Abstract:

After the post-industrial era, when a wide variety of foods and drinks are readily available everywhere, the motive has shifted from meeting basic nutritional needs to enjoy the eating experience. Today, behavioral environmental studies are an essential branch of science when it comes to understanding, analyzing, and evaluating how humans react to the environment. Similarly, these studies explore customer-influencing factors and the effectiveness of restaurant designs. To facilitate a pleasant dining experience, the authors focused on acoustics, flexibility, and lighting. In this study, 2700 square feet of surface area was used to plan a restaurant (called Mesineh) based on behavioral science, considering many factors related to the interaction between the building and the users, such as flexibility and privacy, acoustics, and light. Environment psychology considerations in architectural design have been lacking for several decades. To fill this gap, the author evaluated environmental psychology standards and applied them to Mesineh's design. A sense of nostalgia will be felt by customers of the Mesineh restaurant thanks to its interior design, which combines historical elements with contemporary elements. Additionally, vernacular Persian architectural elements were incorporated into a modern context to fulfill the behavioral science component of interior design.

Keywords: Mesineh restaurant, interior design, behavioral sciences, environment psychology, traditional persian architecture

Procedia PDF Downloads 209
24601 A Concept of Data Mining with XML Document

Authors: Akshay Agrawal, Anand K. Srivastava

Abstract:

The increasing amount of XML datasets available to casual users increases the necessity of investigating techniques to extract knowledge from these data. Data mining is widely applied in the database research area in order to extract frequent correlations of values from both structured and semi-structured datasets. The increasing availability of heterogeneous XML sources has raised a number of issues concerning how to represent and manage these semi structured data. In recent years due to the importance of managing these resources and extracting knowledge from them, lots of methods have been proposed in order to represent and cluster them in different ways.

Keywords: XML, similarity measure, clustering, cluster quality, semantic clustering

Procedia PDF Downloads 381
24600 Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, YongBeum Kim

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, internet of things, transmission Speed

Procedia PDF Downloads 483
24599 Immersive Environment as an Occupant-Centric Tool for Architecture Criticism and Architectural Education

Authors: Golnoush Rostami, Farzam Kharvari

Abstract:

In recent years, developments in the field of architectural education have resulted in a shift from conventional teaching methods to alternative state-of-the-art approaches in teaching methods and strategies. Criticism in architecture has been a key player both in the profession and education, but it has been mostly offered by renowned individuals. Hence, not only students or other professionals but also critics themselves may not have the option to experience buildings and rely on available 2D materials, such as images and plans, that may not result in a holistic understanding and evaluation of buildings. On the other hand, immersive environments provide students and professionals the opportunity to experience buildings virtually and reflect their evaluation by experiencing rather than judging based on 2D materials. Therefore, the aim of this study is to compare the effect of experiencing buildings in immersive environments and 2D drawings, including images and plans, on architecture criticism and architectural education. As a result, three buildings that have parametric brick facades were studied through 2D materials and in Unreal Engine v. 24 as an immersive environment among 22 architecture students that were selected using convenient sampling and were divided into two equal groups using simple random sampling. This study used mixed methods, including quantitative and qualitative methods; the quantitative section was carried out by a questionnaire, and deep interviews were used for the qualitative section. A questionnaire was developed for measuring three constructs, including privacy regulation based on Altman’s theory, the sufficiency of illuminance levels in the building, and the visual status of the view (visually appealing views based on obstructions that may have been caused by facades). Furthermore, participants had the opportunity to reflect their understanding and evaluation of the buildings in individual interviews. Accordingly, the collected data from the questionnaires were analyzed using independent t-test and descriptive analyses in IBM SPSS Statistics v. 26, and interviews were analyzed using the content analysis method. The results of the interviews showed that the participants who experienced the buildings in the immersive environment were able to have a thorough and more precise evaluation of the buildings in comparison to those who studied them through 2D materials. Moreover, the analyses of the respondents’ questionnaires revealed that there were statistically significant differences between measured constructs among the two groups. The outcome of this study suggests that integrating immersive environments into the profession and architectural education as an effective and efficient tool for architecture criticism is vital since these environments allow users to have a holistic evaluation of buildings for vigorous and sound criticism.

Keywords: immersive environments, architecture criticism, architectural education, occupant-centric evaluation, pre-occupancy evaluation

Procedia PDF Downloads 134
24598 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems

Authors: Sreejith Gopinath, Aspen Olmsted

Abstract:

This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.

Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference

Procedia PDF Downloads 132
24597 Managing the Architectural Heritage of Tripoli-Libya: The Red Castle as a Case Study

Authors: Eman Mohamed Ali Elalwani

Abstract:

The Libyan heritage buildings are currently facing a number of crises that pose a threat to their structural integrity, functionality, and overall performance. One of the challenges pertains to the loss of community identity, which has arisen due to the lack of awareness and unconscious behavior of the residents. An additional issue arises from inadequate site management practices, including the implementation of modern techniques and innovative building materials that are incompatible with structural elements, resulting in the deformation of certain sections of the buildings. The security concerns of the city, along with the ongoing civil conflict, fostered a conducive environment for violations, resulting in the vandalism of certain monuments in the city. However, the degradation of this valuable heritage is mainly attributed to the city's neglect and pollution. The elevated groundwater level resulting from pollution has led to erosion in the building's foundations. Mitigating these negative consequences through strategic interventions and rehabilitation is required to preserve this treasure. In order to assist the local community in recovering from those crises, this paper stated a viable strategy for promoting preservation efforts that aimed at safeguarding the heritage sites while also providing guidance to decision-makers and the local community on how to avoid these crises, preserve, enhance, and recognize the significance of the Libyan heritage.

Keywords: cultural heritage, historical buildings, Tripoli’s old city, Red Castle, crises, preservation

Procedia PDF Downloads 125
24596 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping

Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh

Abstract:

Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.

Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A

Procedia PDF Downloads 171
24595 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 168
24594 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions

Procedia PDF Downloads 52
24593 Artificial Intelligence in Vietnamese Higher Education: Benefits, Challenges and Ethics

Authors: Duong Van Thanh

Abstract:

Artificial Intelligence (AI) has been recently a new trend in Higher Education systems globally as well as in the Vietnamese Higher Education. This study explores the benefits and challenges in applications of AI in 02 selected universities, ie. Vietnam National Universities in Hanoi Capital and the University of Economics in Ho Chi Minh City. Particularly, this paper focuses on how the ethics of Artificial Intelligence have been addressed among faculty members at these two universities. The AI ethical issues include the access and inclusion, privacy and security, transparency and accountability. AI-powered educational technology has the potential to improve access and inclusion for students with disabilities or other learning needs. However, there is a risk that AI-based systems may not be accessible to all students and may even exacerbate existing inequalities. AI applications can be opaque and difficult to understand, making it challenging to hold them accountable for their decisions and actions. It is important to consider the benefits that adopting AI-systems bring to the institutions, teaching, and learning. And it is equally important to recognize the drawbacks of using AI in education and to take the necessary steps to mitigate any negative impact. The results of this study present a critical concern in higher education in Vietnam, where AI systems may be used to make important decisions about students’ learning and academic progress. The authors of this study attempt to make some recommendation that the AI-system in higher education system is frequently checked by a human in charge to verify that everything is working as it should or if the system needs some retraining or adjustments.

Keywords: artificial intelligence, ethics, challenges, vietnam

Procedia PDF Downloads 125
24592 Data-Driven Decision Making: Justification of Not Leaving Class without It

Authors: Denise Hexom, Judith Menoher

Abstract:

Teachers and administrators across America are being asked to use data and hard evidence to inform practice as they begin the task of implementing Common Core State Standards. Yet, the courses they are taking in schools of education are not preparing teachers or principals to understand the data-driven decision making (DDDM) process nor to utilize data in a much more sophisticated fashion. DDDM has been around for quite some time, however, it has only recently become systematically and consistently applied in the field of education. This paper discusses the theoretical framework of DDDM; empirical evidence supporting the effectiveness of DDDM; a process a department in a school of education has utilized to implement DDDM; and recommendations to other schools of education who attempt to implement DDDM in their decision-making processes and in their students’ coursework.

Keywords: data-driven decision making, institute of higher education, special education, continuous improvement

Procedia PDF Downloads 387
24591 Quantile Coherence Analysis: Application to Precipitation Data

Authors: Yaeji Lim, Hee-Seok Oh

Abstract:

The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.

Keywords: coherence, cross periodogram, spectrum, quantile

Procedia PDF Downloads 390
24590 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources

Authors: Lazlo Fauth, Andreas Ligocki

Abstract:

For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.

Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data

Procedia PDF Downloads 145
24589 Balancing Security and Human Rights: A Comprehensive Approach to Security and Defense Policy

Authors: Babatunde Osabiya

Abstract:

Cybersecurity has emerged as a pressing policy problem in recent years, affecting individuals, businesses, and governments worldwide. This research paper aims to critically review the literature on cybersecurity policy and apply policy theory to propose a policy approach that balances the freedom to access and use technology with the human rights risks and threats posed by cyber. Drawing on various credible sources, the paper examines the scale and seriousness of cyber threats, highlighting the growing threat posed by cybercriminals, hackers, and nation-states. The paper also identifies the key challenges facing policymakers, including the need for more significant investment in cybersecurity research and development and the importance of balancing the benefits of technological innovation with the risks to privacy, security, and human rights. To address these challenges, the paper proposes a policy approach emphasizing investing in cybersecurity research and development to maintain a technological edge over potential adversaries. This approach also highlights the need for greater collaboration between government, industry, and civil society to develop effective cybersecurity policies and practices that protect the rights and freedoms of people while mitigating the risks posed by cyber threats. This paper will contribute to the growing body of literature on cybersecurity policy and offers a policy framework for addressing this critical policy challenge.

Keywords: security risk, legal framework, cyber security and policy, national security

Procedia PDF Downloads 93
24588 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: sampled-data control, fuel cell, linear matrix inequalities, nonlinear control

Procedia PDF Downloads 565
24587 How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach

Authors: Daniel Benson, Yundan Gong, Hannah Kirk

Abstract:

Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.

Keywords: international aid, geocoding, subnational data, natural language processing, machine learning

Procedia PDF Downloads 78
24586 Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano

Authors: Guo Wenyu, Qu Youli

Abstract:

A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza & Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the φ is more important than the alphabet size on the compression ratio. Unevenly distributed data φ makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time.

Keywords: compressed suffix array, self-indexing, partitioned Elias-Fano, PEF-CSA

Procedia PDF Downloads 252
24585 Evolution of Web Development Progress in Modern Information Technology

Authors: Abdul Basit Kiani

Abstract:

Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design

Procedia PDF Downloads 54