Search results for: accounting decision making
6356 Hedging and Corporate Governance: Lessons from the Financial Crisis
Authors: Rodrigo Zeidan
Abstract:
The paper identifies failures of decision making and corporate governance that allow non-financial companies around the world to develop hedging strategies that lead to hefty losses in the aftermath of the financial crisis. The sample is comprised of 346 companies from 10 international markets, of which 49 companies (and a subsample of 13 distressed companies) lose a combined US$18.9 billion. An event study shows that most companies that present losses in derivatives experience negative abnormal returns, including a number of companies in which the effect is persistent after a year. The results of a probit model indicate that the lack of a formal hedging policy, no monitoring to the CFOs, and considerations of hubris and remuneration contribute to the mismanagement of hedging policies.Keywords: risk management, hedging, derivatives, monitoring, corporate governance structure, event study, hubris
Procedia PDF Downloads 4436355 The Methodology of Hand-Gesture Based Form Design in Digital Modeling
Authors: Sanghoon Shim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the digital technology develops, studies on the TUI (Tangible User Interface) that links the physical environment utilizing the human senses with the virtual environment through the computer are actively being conducted. In addition, there has been a tremendous advance in computer design making through the use of computer-aided design techniques, which enable optimized decision-making through comparison with machine learning and parallel comparison of alternatives. However, a complex design that can respond to user requirements or performance can emerge through the intuition of the designer, but it is difficult to actualize the emerged design by the designer's ability alone. Ancillary tools such as Gaudí's Sandbag can be an instrument to reinforce and evolve emerged ideas from designers. With the advent of many commercial tools that support 3D objects, designers' intentions are easily reflected in their designs, but the degree of their reflection reflects their intentions according to the proficiency of design tools. This study embodies the environment in which the form can be implemented by the fingers of the most basic designer in the initial design phase of the complex type building design. Leapmotion is used as a sensor to recognize the hand motions of the designer, and it is converted into digital information to realize an environment that can be linked in real time in virtual reality (VR). In addition, the implemented design can be linked with Rhino™, a 3D authoring tool, and its plug-in Grasshopper™ in real time. As a result, it is possible to design sensibly using TUI, and it can serve as a tool for assisting designer intuition.Keywords: design environment, digital modeling, hand gesture, TUI, virtual reality
Procedia PDF Downloads 3666354 Considering International/Local Peacebuilding Partnerships: The Stoplights Analysis System
Authors: Charles Davidson
Abstract:
This paper presents the Stoplight Analysis System of Partnering Organizations Readiness, offering a structured framework to evaluate conflict resolution collaboration feasibility, especially crucial in conflict areas, employing a colour-coded approach and specific assessment points, with implications for more informed decision-making and improved outcomes in peacebuilding initiatives. Derived from at total of 40 years of practical peacebuilding experience from the project’s two researchers as well as interviews of various other peacebuilding actors, this paper introduces the Stoplight Analysis System of Partnering Organizations Readiness, a comprehensive framework designed to facilitate effective collaboration in international/local peacebuilding partnerships by evaluating the readiness of both potential partner organisations and the location of the proposed project. ^The system employs a colour-coded approach, categorising potential partnerships into three distinct indicators: Red (no-go), Yellow (requires further research), and Green (promising, go ahead). Within each category, specific points are identified for assessment, guiding decision-makers in evaluating the feasibility and potential success of collaboration. The Red category signals significant barriers, prompting an immediate stoppage in the consideration of partnership. The Yellow category encourages deeper investigation to determine whether potential issues can be mitigated, while the Green category signifies organisations deemed ready for collaboration. This systematic and structured approach empowers decision-makers to make informed choices, enhancing the likelihood of successful and mutually beneficial partnerships. Methodologically, this paper utilised interviews from peacebuilders from around the globe, scholarly research of extant strategies, and a collaborative review of programming from the project’s two authors from their own time in the field. This method as a formalised model has been employed for the past two years across a litany of partnership considerations, and has been adjusted according to its field experimentation. This research holds significant importance in the field of conflict resolution as it provides a systematic and structured approach to peacebuilding partnership evaluation. In conflict-affected regions, where the dynamics are complex and challenging, the Stoplight Analysis System offers decision-makers a practical tool to assess the readiness of partnering organisations. This approach can enhance the efficiency of conflict resolution efforts by ensuring that resources are directed towards partnerships with a higher likelihood of success, ultimately contributing to more effective and sustainable peacebuilding outcomes.Keywords: collaboration, conflict resolution, partnerships, peacebuilding
Procedia PDF Downloads 646353 Urban Waste Management for Health and Well-Being in Lagos, Nigeria
Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo
Abstract:
High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.Keywords: health, infrastructure, management, septage, well-being
Procedia PDF Downloads 1776352 Decision Support System for Diagnosis of Breast Cancer
Authors: Oluwaponmile D. Alao
Abstract:
In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.Keywords: breast cancer, data mining, neural network, support vector machine
Procedia PDF Downloads 3476351 Progress Toward More Resilient Infrastructures
Authors: Amir Golalipour
Abstract:
In recent years, resilience emerged as an important topic in transportation infrastructure practice, planning, and design to address the myriad stressors of future climate facing the Nation. Climate change has increased the frequency of extreme weather events and also causes climate and weather patterns to diverge from historic trends, culminating in circumstances where transportation infrastructure and assets are operating outside the scope of their design. To design and maintain transportation infrastructure that can continue meeting objectives over the infrastructure’s design life, these systems must be made adaptable to the changing climate by incorporating resilience wherever practically and financially feasible. This study is focused on the adaptation strategies and incorporation of resilience in infrastructure construction, maintenance, rehabilitation, and preservation processes. This study will include highlights from some of the recent FHWA activities on resilience. This study describes existing resilience planning and decision-making practices related to transportation infrastructure; mechanisms to identify, analyze, and prioritize adaptation options; and the strain that future climate and extreme weather event pressures place on existing transportation assets and the stressors these systems face for both single and combined stressor scenarios. Results of two case studies from Transportation Engineering Approaches to Climate Resiliency (TEACR) projects with focus on temperature and precipitation impacts on transportation infrastructures will be presented. These case studies looked at the impact of infrastructure performance using future temperature and precipitation compared to traditional climate design parameters. The research team used the adaptation decision making assessment and Coupled Model Intercomparison Project (CMIP) processing tool to determine which solution is best to pursue. The CMIP tool provided project climate data for temperature and precipitation which then could be incorporated into the design procedure to estimate the performance. As a result, using the future climate scenarios would impact the design. These changes were noted to have only a slight increase in costs, however it is acknowledged that network wide these costs could be significant. This study will also focus on what we have learned from recent storms, floods, and climate related events that will help us be better prepared to ensure our communities have a resilient transportation network. It should be highlighted that standardized mechanisms to incorporate resilience practices are required to encourage widespread implementation, mitigate the effects of climate stressors, and ensure the continuance of transportation systems and assets in an evolving climate.Keywords: adaptation strategies, extreme events, resilience, transportation infrastructure
Procedia PDF Downloads 96350 Genetic Variation of Shvicezebuvides Cattle in Tajikistan Based on Microsatellite Markers
Authors: Norezzine Abdelaziz, Rebouh Nazih Yacer, Kezimana Parfait, Parpura D. I., Gadzhikurbanov A., Anastasios Dranidis
Abstract:
The genetic variation of Shvicezebuvides cattle from three different farms in the Tajikistan Republic was studied using 10 microsatellite markers (SSR). The trials were laid out using a multi- locus analysis system for the analysis of cattle microsatellite locus. An estimated genetic variability of the examined livestock is given in the article. The results of our SSR analysis as well as the numbers and frequencies of common alleles in studied samples, we established a high genetic similarity of studied samples. These results can also be furthermore useful in the decision making for preservation and rational genetic resources usage of the Tajik Shvicezebuvides cattle.Keywords: genetic characteristic, frequencies of the occurrence alleles, microsatellite markers, Swiss cattle
Procedia PDF Downloads 3036349 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems
Authors: Bronwen Wade
Abstract:
Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality
Procedia PDF Downloads 546348 Increasing Preference for Culturally Incongruent Offerings in Traditional Cultures
Authors: Najam U. Saqib
Abstract:
Self-construal or an individual’s view of him or herself is an important variable by which culture affects the way people think and act. This notion of self-construal is identified with two distinct perspectives on the self. Within the independent construal, the self is seen as different from others, a way of defining the self, prominent in Western societies. The interdependent perspective which is typical for Eastern cultures emphasizes the connectedness of the self to others. The degree of independence-interdependence in one’s self-construal is thought to affect behavior, acceptance of social values, and decision making. This paper manipulates self-construal of Qatari consumers and investigates its effects on accepting incongruent changes in culture as a result of adopting market offerings and behavior that may be perceived as inconsistent with their self-construal. The research recommends strategies for policy makers in Qatar for successful advocacy of initiatives of national importance such as reducing diabetes and obesity by applying self-construal theory.Keywords: cross-cultural, consumer behavior, self-construal, GCC (Gulf Cooperation Council)
Procedia PDF Downloads 1866347 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.Keywords: decision support systems, early warning systems, flash flood, natural hazard
Procedia PDF Downloads 3736346 Detecting of Crime Hot Spots for Crime Mapping
Authors: Somayeh Nezami
Abstract:
The management of financial and human resources of police in metropolitans requires many information and exact plans to reduce a rate of crime and increase the safety of the society. Geographical Information Systems have an important role in providing crime maps and their analysis. By using them and identification of crime hot spots along with spatial presentation of the results, it is possible to allocate optimum resources while presenting effective methods for decision making and preventive solutions. In this paper, we try to explain and compare between some of the methods of hot spots analysis such as Mode, Fuzzy Mode and Nearest Neighbour Hierarchical spatial clustering (NNH). Then the spots with the highest crime rates of drug smuggling for one province in Iran with borderline with Afghanistan are obtained. We will show that among these three methods NNH leads to the best result.Keywords: GIS, Hot spots, nearest neighbor hierarchical spatial clustering, NNH, spatial analysis of crime
Procedia PDF Downloads 3316345 Downtime Modelling for the Post-Earthquake Building Assessment Phase
Authors: S. Khakurel, R. P. Dhakal, T. Z. Yeow
Abstract:
Downtime is one of the major sources (alongside damage and injury/death) of financial loss incurred by a structure in an earthquake. The length of downtime associated with a building after an earthquake varies depending on the time taken for the reaction (to the earthquake), decision (on the future course of action) and execution (of the decided course of action) phases. Post-earthquake assessment of buildings is a key step in the decision making process to decide the appropriate safety placarding as well as to decide whether a damaged building is to be repaired or demolished. The aim of the present study is to develop a model to quantify downtime associated with the post-earthquake building-assessment phase in terms of two parameters; i) duration of the different assessment phase; and ii) probability of different colour tagging. Post-earthquake assessment of buildings includes three stages; Level 1 Rapid Assessment including a fast external inspection shortly after the earthquake, Level 2 Rapid Assessment including a visit inside the building and Detailed Engineering Evaluation (if needed). In this study, the durations of all three assessment phases are first estimated from the total number of damaged buildings, total number of available engineers and the average time needed for assessing each building. Then, probability of different tag colours is computed from the 2010-11 Canterbury earthquake Sequence database. Finally, a downtime model for the post-earthquake building inspection phase is proposed based on the estimated phase length and probability of tag colours. This model is expected to be used for rapid estimation of seismic downtime within the Loss Optimisation Seismic Design (LOSD) framework.Keywords: assessment, downtime, LOSD, Loss Optimisation Seismic Design, phase length, tag color
Procedia PDF Downloads 1856344 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System
Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli
Abstract:
Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 1316343 A Decision Tree Approach to Estimate Permanent Residents Using Remote Sensing Data in Lebanese Municipalities
Authors: K. Allaw, J. Adjizian Gerard, M. Chehayeb, A. Raad, W. Fahs, A. Badran, A. Fakherdin, H. Madi, N. Badaro Saliba
Abstract:
Population estimation using Geographic Information System (GIS) and remote sensing faces many obstacles such as the determination of permanent residents. A permanent resident is an individual who stays and works during all four seasons in his village. So, all those who move towards other cities or villages are excluded from this category. The aim of this study is to identify the factors affecting the percentage of permanent residents in a village and to determine the attributed weight to each factor. To do so, six factors have been chosen (slope, precipitation, temperature, number of services, time to Central Business District (CBD) and the proximity to conflict zones) and each one of those factors has been evaluated using one of the following data: the contour lines map of 50 m, the precipitation map, four temperature maps and data collected through surveys. The weighting procedure has been done using decision tree method. As a result of this procedure, temperature (50.8%) and percentage of precipitation (46.5%) are the most influencing factors.Keywords: remote sensing, GIS, permanent residence, decision tree, Lebanon
Procedia PDF Downloads 1346342 Smart Speed Bump
Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh
Abstract:
Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.Keywords: invention, smart, robotic system, speed bump, traffic, management
Procedia PDF Downloads 4186341 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2556340 Environmental Education and Climate Change Resilience Development in Schools of Pakistan
Authors: Mehak Masood
Abstract:
Education is critical for promoting sustainable development and improving the capacity of people to address environment and development issues. It is also critical for achieving environmental and ethical awareness, values and attitudes, skills and behaviour consistent with sustainable development and for effective public participation in decision-making. In this regard, The British Council Pakistan have conducted a need assessment study conducted during the training sessions with three different groups of educationists belonging to both government and public sectors on the topic of Climate Change and Environmental Education (CCEE). This study aims to review perceptions about climate change and environmental education and analyze its need and importance according to educationists of Pakistan.Keywords: environmental education, climate change, resilience development, awareness
Procedia PDF Downloads 4246339 Development of a Performance Measurement Model for Hospitals Using Multi-Criteria Decision Making (MCDM) Techniques: A Case Study of Three South Australian Major Public Hospitals
Authors: Mohammad Safaeipour, Yousef Amer
Abstract:
This study directs its focus on developing a conceptual model to offer a systematic and integrated method to weigh the related measures and evaluate a competence of hospitals and rank of the selected hospitals that involve and consider the stakeholders’ key performance indicators (KPI’s). The Analytical Hierarchy Process (AHP) approach will use to weigh the dimensions and related sub- components. The weights and performance scores will combine by using the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) and rank the selected hospitals. The results of this study provide interesting insight into the necessity of process improvement implementation in which hospital that received the lowest ranking score.Keywords: performance measurement system, PMS, hospitals, AHP, TOPSIS
Procedia PDF Downloads 3746338 Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context
Authors: Susmita Ghosh, Bhaskar Bhowmick
Abstract:
Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirms the number of factor retention using an alternative factor retention criterion, ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation.Keywords: uncertainty, market, orientation, competitor, demand
Procedia PDF Downloads 5916337 The Moderation Effect of Financial Distress on the Relationship Between Market Power and Earnings Management of Firms
Authors: Shazia Ali, Yves Mard, Éric Severin
Abstract:
To the best of our knowledge, this is the first study to have analyzed the impact of a) firm-specific product-market power and b) industry competition on earnings management behavior of European firms in distress versus healthy years while controlling for firm-level characteristics. We predicted a significant relationship between firms’ product market power and earnings management tools and their trade-off under the moderation effect of financial distress. We found that the firm-level market power hereinafter referred to as MP (proxied by the industry-adjusted Lerner Index) is positively associated with both real and accrual earnings management. However, MP is associated with a higher level of real earnings management compared to accrual earnings management in distress years compared to healthy years. On the other hand, industry product market power (representing low competition and proxied by the inverse of the total number of firms in an industry hereinafter referred to as NUMB) and firms product market power (proxied by firm market share hereinafter referred to as MS) are associated with lower inflationary accruals and higher deflationary accruals respectively. On the other hand, they are found to be linked with higher real earnings management in distress versus healthy years. When we divided the sample into small and big firms based on their respective industry-year median total assets, we found that all three measures of industry competition (Industry Median Lerner Index (hereinafter referred to as IMLI), NUMB, and Herfindahl–Hirschman Index (hereinafter referred to as HHI) indicate that small firms in low-competitive industries in financial distress are more likely to inflate their earnings through discretionary accruals. While big firms in this situation are more likely to lower the use of both inflationary and deflationary discretionary accruals as indicated by IMLI and HHI and trade-off accruals earnings management for real earnings management as indicated by NUMB. Moreover, IMLI and HHI did not show any interesting results when we divided the sample based on the firm Lerner Index/Market Power. However, the distressed firms with high market power (MP>industry median) are found to engage in income-decreasing discretionary accruals in low-competitive industries (high NUMB). Whereas firms with low market power in the same industry use downward discretionary accruals but inflate income using real activities (abnCFO). Our findings are robust across alternate measures of discretionary accruals and financial distress, such as the Altman Z-Score. The finding of the study is valuable for accounting standard setters, competition authorities, policymakers, and investors alike to help in informed decision-making.Keywords: financial distress, earnings management, market competition
Procedia PDF Downloads 1216336 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 5216335 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features
Authors: Yurii Bloshko, Oksana Olar
Abstract:
This paper presents the analysis of 6 different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.Keywords: fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms
Procedia PDF Downloads 1436334 Consequences to Financial Reporting by Implementing Sri Lanka Financial Reporting Standard 13 on Measuring the Fair Value of Financial Instruments: Evidence from Three Sri Lankan Organizations
Authors: Nayoma Ranawaka
Abstract:
The demand for the high quality internationally comparable financial information has been increased than ever with the expansion of economic activities beyond its national boundaries. Thus, the necessity of converging accounting practices across the world is now continuously discussed with greater emphasis. The global convergence to International Financial Reporting Standards has been one of the main objectives of the International Accounting Standards Setting Board (IASB) since its establishment in 2001. Accordingly, Sri Lanka has adopted IFRSs in 2012. Among the other standards as a newly introduced standard by the IASB, IFRS 13 plays a pivotal role as it deals with the Fair Value Accounting (FVA). Therefore, it is valuable to obtain knowledge about the consequences of implementing IFRS 13 in Sri Lanka and compare results across nations. According to the IFRS Jurisdictional provision of Sri Lanka, Institute of Chartered Accountants of Sri Lanka has taken official steps to adopt IFRS 13 by introducing SLFRS 13 with de jure convergence. Then this study was identified the de facto convergence of the SLFRS 13 in measuring the Fair Value of Financial Instruments in the Sri Lankan context. Accordingly, the objective of this study is to explore the consequences to financial reporting by implementing SLFRS 13 on measuring the financial instruments. In order to achieve the objective of the study expert interview and in-depth interviews with the interviewees from the selected three case studies and their independent auditor were carried out using customized three different interview guides. These three cases were selected from three different industries; Banking, Manufacturing and Finance. NVivo version 10 was used to analyze the data collected through in-depth interviews. Then the content analysis was carried out and conclusions were derived based on the findings. Contribution to the knowledge by this study can be identified in different aspects. Findings of this study facilitate accounting practitioners to get an overall picture of application of fair value standard in measuring the financial instruments and to identify the challenges and barriers to the adoption process. Further, assist auditors in carrying out their audit procedures to check the level of compliance to the fair value standard in measuring the financial instruments. Moreover, this would enable foreign investors in assessing the reliability of the financial statements of their target investments as a result of SLFRS 13 in measuring the FVs of the FIs. The findings of the study could be used to open new avenues of thinking for policy formulators to provide the necessary infrastructure to eliminate disparities exists among different regulatory bodies to facilitate full convergence and thereby growth of the economy. Further, this provides insights to the dynamics of FVA implementation that are also relevant for other developing countries.Keywords: convergence, fair value, financial instruments, IFRS 13
Procedia PDF Downloads 1266333 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.Keywords: big data, social networks, sentiment analysis, twitter
Procedia PDF Downloads 5796332 A Study on Game Theory Approaches for Wireless Sensor Networks
Authors: M. Shoukath Ali, Rajendra Prasad Singh
Abstract:
Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc.Keywords: wireless sensor network, game theory, cooperative game theory, non-cooperative game theory
Procedia PDF Downloads 4356331 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty
Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos
Abstract:
Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning
Procedia PDF Downloads 2116330 Case Study of the Roma Tomato Distribution Chain: A Dynamic Interface for an Agricultural Enterprise in Mexico
Authors: Ernesto A. Lagarda-Leyva, Manuel A. Valenzuela L., José G. Oshima C., Arnulfo A. Naranjo-Flores
Abstract:
From August to December of 2016, a diagnostic and strategic planning study was carried out on the supply chain of the company Agropecuaria GABO S.A. de C.V. The final product of the study was the development of the strategic plan and a project portfolio to meet the demands of the three links in the supply chain of the Roma tomato exported annually to the United States of America. In this project, the strategic objective of ensuring the proper handling of the product was selected and one of the goals associated with this was the employment of quantitative methods to support decision making. Considering the antecedents, the objective of this case study was to develop a model to analyze the behavioral dynamics in the distribution chain, from the logistics of storage and shipment of Roma tomato in 81-case pallets (11.5 kg per case), to the two pre-cooling rooms and eventual loading onto transports, seeking to reduce the bottleneck and the associated costs by means of a dynamic interface. The methodology used was that of system dynamics, considering four phases that were adapted to the purpose of the study: 1) the conceptualization phase; 2) the formulation phase; 3) the evaluation phase; and 4) the communication phase. The main practical conclusions lead to the possibility of reducing both the bottlenecks in the cooling rooms and the costs by simulating scenarios and modifying certain policies. Furthermore, the creation of the dynamic interface between the model and the stakeholders was achieved by generating interaction with buttons and simple instructions that allow making modifications and observing diverse behaviors.Keywords: agrilogistics, distribution, scenarios, system dynamics
Procedia PDF Downloads 2316329 Analyzing Brand Related Information Disclosure and Brand Value: Further Empirical Evidence
Authors: Yves Alain Ach, Sandra Rmadi Said
Abstract:
An extensive review of literature in relation to brands has shown that little research has focused on the nature and determinants of the information disclosed by companies with respect to the brands they own and use. The objective of this paper is to address this issue. More specifically, the aim is to characterize the nature of the information disclosed by companies in terms of estimating the value of brands and to identify the determinants of that information according to the company’s characteristics most frequently tested by previous studies on the disclosure of information on intangible capital, by studying the practices of a sample of 37 French companies. Our findings suggest that companies prefer to communicate accounting, economic and strategic information in relation to their brands instead of providing financial information. The analysis of the determinants of the information disclosed on brands leads to the conclusion that the groups which operate internationally and have chosen a category 1 auditing firm to communicate more information to investors in their annual report. Our study points out that the sector is not an explanatory variable for voluntary brand disclosure, unlike previous studies on intangible capital. Our study is distinguished by the study of an element that has been little studied in the financial literature, namely the determinants of brand-related information. With regard to the effect of size on brand-related information disclosure, our research does not confirm this link. Many authors point out that large companies tend to publish more voluntary information in order to respond to stakeholder pressure. Our study also establishes that the relationship between brand information supply and performance is insignificant. This relationship is already controversial by previous research, and it shows that higher profitability motivates managers to provide more information, as this strengthens investor confidence and may increase managers' compensation. Our main contribution focuses on the nature of the inherent characteristics of the companies that disclose the most information about brands. Our results show the absence of a link between size and industry on the one hand and the supply of brand information on the other, contrary to previous research. Our analysis highlights three types of information disclosed about brands: accounting, economics and strategy. We, therefore, question the reasons that may lead companies to voluntarily communicate mainly accounting, economic and strategic information in relation to our study from one year to the next and not to communicate detailed information that would allow them to reconstitute the financial value of their brands. Our results can be useful for companies and investors. Our results highlight, to our surprise, the lack of financial information that would allow investors to understand a better valuation of brands. We believe that additional information is needed to improve the quality of accounting and financial information related to brands. The additional information provided in the special report that we recommend could be called a "report on intangible assets”.Keywords: brand related information, brand value, information disclosure, determinants
Procedia PDF Downloads 856328 Unified Structured Process for Health Analytics
Authors: Supunmali Ahangama, Danny Chiang Choon Poo
Abstract:
Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.Keywords: agile methodology, health analytics, unified process model, UML
Procedia PDF Downloads 5076327 Working at the Interface of Health and Criminal Justice: An Interpretative Phenomenological Analysis Exploration of the Experiences of Liaison and Diversion Nurses – Emerging Findings
Authors: Sithandazile Masuku
Abstract:
Introduction: Public health approaches to offender mental health are driven by international policies and frameworks in response to the disproportionately large representation of people with mental health problems within the offender pathway compared to the general population. Public health service innovations include mental health courts in the US, restorative models in Singapore and, liaison and diversion services in Australia, the UK, and some other European countries. Mental health nurses are at the forefront of offender health service innovations. In the U.K. context, police custody has been identified as an early point within the offender pathway where nurses can improve outcomes by offering assessments and share information with criminal justice partners. This scope of nursing practice has introduced challenges related to skills and support required for nurses working at the interface of health and the criminal justice system. Parallel literature exploring experiences of nurses working in forensic settings suggests the presence of compassion fatigue, burnout and vicarious trauma that may impede risk harm to the nurses in these settings. Published research explores mainly service-level outcomes including monitoring of figures indicative of a reduction in offending behavior. There is minimal research exploring the experiences of liaison and diversion nurses who are situated away from a supportive clinical environment and engaged in complex autonomous decision-making. Aim: This paper will share qualitative findings (in progress) from a PhD study that aims to explore the experiences of liaison and diversion nurses in one service in the U.K. Methodology: This is a qualitative interview study conducted using an Interpretative Phenomenological Analysis to gain an in-depth analysis of lived experiences. Methods: A purposive sampling technique was used to recruit n=8 mental health nurses registered with the UK professional body, Nursing and Midwifery Council, from one UK Liaison and Diversion service. All participants were interviewed online via video call using semi-structured interview topic guide. Data were recorded and transcribed verbatim. Data were analysed using the seven steps of the Interpretative Phenomenological Analysis data analysis method. Emerging Findings Analysis to date has identified pertinent themes: • Difficulties of meaning-making for nurses because of the complexity of their boundary spanning role. • Emotional burden experienced in a highly emotive and fast-changing environment. • Stress and difficulties with role identity impacting on individual nurses’ ability to be resilient. • Challenges to wellbeing related to a sense of isolation when making complex decisions. Conclusion Emerging findings have highlighted the lived experiences of nurses working in liaison and diversion as challenging. The nature of the custody environment has an impact on role identity and decision making. Nurses left feeling isolated and unsupported are less resilient and may go on to experience compassion fatigue. The findings from this study thus far point to a need to connect nurses working in these boundary spanning roles with a supportive infrastructure where the complexity of their role is acknowledged, and they can be connected with a health agenda. In doing this, the nurses would be protected from harm and the likelihood of sustained positive outcomes for service users is optimised.Keywords: liaison and diversion, nurse experiences, offender health, staff wellbeing
Procedia PDF Downloads 137