Search results for: learning design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17860

Search results for: learning design

5740 Effect of Powder Shape on Physical Properties of Porous Coatings

Authors: M. Moayeri, A. Kaflou

Abstract:

Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.

Keywords: porous coat, permeability, mechanical strength, porosity

Procedia PDF Downloads 343
5739 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa

Authors: Xiaoci Li, Yonghua Huang, Hui Lin

Abstract:

Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.

Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property

Procedia PDF Downloads 282
5738 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 81
5737 Environmental Life Cycle Assessment of Circular, Bio-Based and Industrialized Building Envelope Systems

Authors: N. Cihan KayaçEtin, Stijn Verdoodt, Alexis Versele

Abstract:

The construction industry is accounted for one-third of all waste generated in the European Union (EU) countries. The Circular Economy Action Plan of the EU aims to tackle this issue and aspires to enhance the sustainability of the construction industry by adopting more circular principles and bio-based material use. The Interreg Circular Bio-Based Construction Industry (CBCI) project was conceived to research how this adoption can be facilitated. For this purpose, an approach is developed that integrates technical, legal and social aspects and provides business models for circular designing and building with bio-based materials. In the scope of the project, the research outputs are to be displayed in a real-life setting by constructing a demo terraced single-family house, the living lab (LL) located in Ghent (Belgium). The realization of the LL is conducted in a step-wise approach that includes iterative processes for design, description, criteria definition and multi-criteria assessment of building components. The essence of the research lies within the exploratory approach to the state-of-art building envelope and technical systems options for achieving an optimum combination for a circular and bio-based construction. For this purpose, nine preliminary designs (PD) for building envelope are generated, which consist of three basic construction methods: masonry, lightweight steel construction and wood framing construction supplemented with bio-based construction methods like cross-laminated timber (CLT) and massive wood framing. A comparative analysis on the PDs was conducted by utilizing several complementary tools to assess the circularity. This paper focuses on the life cycle assessment (LCA) approach for evaluating the environmental impact of the LL Ghent. The adoption of an LCA methodology was considered critical for providing a comprehensive set of environmental indicators. The PDs were developed at the component level, in particular for the (i) inclined roof, (ii-iii) front and side façade, (iv) internal walls and (v-vi) floors. The assessment was conducted on two levels; component and building level. The options for each component were compared at the first iteration and then, the PDs as an assembly of components were further analyzed. The LCA was based on a functional unit of one square meter of each component and CEN indicators were utilized for impact assessment for a reference study period of 60 years. A total of 54 building components that are composed of 31 distinct materials were evaluated in the study. The results indicate that wood framing construction supplemented with bio-based construction methods performs environmentally better than the masonry or steel-construction options. An analysis on the correlation between the total weight of components and environmental impact was also conducted. It was seen that masonry structures display a high environmental impact and weight, steel structures display low weight but relatively high environmental impact and wooden framing construction display low weight and environmental impact. The study provided valuable outputs in two levels: (i) several improvement options at component level with substitution of materials with critical weight and/or impact per unit, (ii) feedback on environmental performance for the decision-making process during the design phase of a circular single family house.

Keywords: circular and bio-based materials, comparative analysis, life cycle assessment (LCA), living lab

Procedia PDF Downloads 171
5736 The Importance of Parental Involvement in Special Education: Enhancing Student Success through Family Engagement

Authors: Adel Al Hashlan

Abstract:

Parent and family engagement plays a crucial role in supporting the success of students with special needs in educational settings. This paper explores the significance of parental involvement in special education, examining its impact on academic achievement, social-emotional development, and overall well-being. Meaningful collaboration between educators, parents, and families can promote positive outcomes for students with diverse learning needs. The study employs a mixed-methods approach, incorporating both qualitative and quantitative techniques. Data were collected through structured interviews, focus groups, and surveys involving students with special needs, their parents, and educators across diverse educational settings. The analysis identifies patterns, themes, and correlations to understand the impact of parent and family engagement on student outcomes. Major findings reveal that effective parent and family involvement initiatives, characterized by strong communication strategies, collaboration frameworks, and partnership-building approaches, significantly enhance students’ academic performance, social-emotional development, and overall well-being. The study also identifies common barriers to parental involvement, such as cultural differences and accessibility issues, and suggests strategies for overcoming these challenges. In conclusion, the study underscores the importance of systemic support and resource allocation to facilitate meaningful partnerships between schools and families. Ongoing research and professional development are crucial to enhancing the effectiveness of parent and family engagement initiatives in special education, ultimately maximizing student achievement and well-being.

Keywords: parental involvement, special education, student success, collaborative partnerships

Procedia PDF Downloads 12
5735 Effect of Early Therapeutic Intervention for the Children With Autism Spectrum Disorders: A Quasi Experimental Design

Authors: Sultana Razia

Abstract:

The purpose of this study was to investigate the effect of early therapeutic intervention for the children with autism spectrum disorder. Participants were 63 children with autism spectrum disorder from Autism Corner in a selected rehabilitation center of Bangladesh. The hypothesis of the study was that participants would demonstrate significant improvement in social skills, speech and sensory skills following a 3-month intensive therapeutic protocol. This study included children who are at age of 18-month to 36-month and who were taking occupational therapy and speech and language therapy from the autism center. They were primarily screened using M-CHAT; however, children with other physical disability or medical conditions excluded. 3-months interventions of 6 sessions per week are a minimum of 45-minutes long per session, one to one interaction followed by parent-led structured home-based therapy was provided. The results indicated that early intensive therapeutic intervention improve understanding, social skills and sensory skills. It can be concluded that therapeutic early intervention a positive effect on Autism Spectrum Disorder.

Keywords: M-CHAT, ASD, sensory cheeklist, OT

Procedia PDF Downloads 46
5734 Regional Identity Construction of Acehnese English Teachers in Professional Practice

Authors: Ugahara Bin Mahyuddin Yunus

Abstract:

In English Language Teaching, it cannot be denied that the backgrounds of English teachers do affect the way they teach English to their students, which in turn will affect their students’ English learning itself. Thus, it is very important to understand who the English teachers are so that how they teach English to their students can be understood. One of their backgrounds that is essential to be highlighted is their culture. Certainly, they wittingly or not will bring the perspectives and values of their culture into their daily teaching practices. In other words, their cultural identities do shape how they teach their students. Cultural identities themselves actually consist of some elements, one of which is regional identity. Indeed, the culture of the region in which English teachers identify with has impact on their beliefs and actions during teaching. For this reason, this study aims to understand how the regional identity of English teachers influence the way they teach English to their students. This study is a qualitative study conducted in a multilingual and multicultural setting, namely Aceh, Indonesia. Here, four Acehnese English teachers were involved as the research participants. In addition, this study adopted poststructuralist perspective to identity as the theoretical framework. Three research instruments were used in this study, namely semi-structured interviews, classroom observation, and teacher journal. The data gained from these instruments were then analyzed by using thematic analysis. Obviously, the research about the regional identity of English teachers in English Language Teaching has been studied worldwide. However, little is still known about it in Indonesian context, let alone Indonesia itself is a super diverse country with 34 regions. As a result, this study presents a good opportunity to advance the knowledge of how the regional identity construction of English teachers in this setting is. The findings of the study revealed that their regional identity construction in teaching was highly influenced by their indigenous language and religious faith. Even, how they teach English in classroom, in fact, is related to these two things. The conclusion that can be drawn from this study is for these English teachers, in fact, their regional identity itself constitutes their use of local language and religious identity, which are considered by them as their core identity.

Keywords: English language teaching, English teachers, identity construction, regional identity

Procedia PDF Downloads 232
5733 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 209
5732 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise

Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke

Abstract:

Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.

Keywords: BSR, noise, correlation, regression

Procedia PDF Downloads 63
5731 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: live tooling, surface roughness, taguchi analysis, CNC milling operation, CNC turning operation

Procedia PDF Downloads 124
5730 Technical Assessment of Utilizing Electrical Variable Transmission Systems in Hybrid Electric Vehicles

Authors: Majid Vafaeipour, Mohamed El Baghdadi, Florian Verbelen, Peter Sergeant, Joeri Van Mierlo, Kurt Stockman, Omar Hegazy

Abstract:

The Electrical Variable Transmission (EVT), an electromechanical device, can be considered as an alternative solution to the conventional transmission system utilized in Hybrid Electric Vehicles (HEVs). This study present comparisons in terms of fuel consumption, power split, and state of charge (SoC) of an HEV containing an EVT to a conventional parallel topology and a series topology. To this end, corresponding simulations of these topologies are all performed in presence of control strategies enabling battery charge-sustaining and efficient power split. The power flow through the components of the vehicle are attained, and fuel consumption results of the considered cases are compared. The investigation of the results indicates utilizing EVT can provide significant added values in HEV configurations. The outcome of the current research paves its path for implementation of design optimization approaches on such systems in further research directions.

Keywords: Electrical Variable Transmission (EVT), Hybrid Electric Vehicle (HEV), parallel, series, modeling

Procedia PDF Downloads 225
5729 Exploring the Factors That Influence the Choices of Senior on Sporting Goods and Brands: A Case Study of Wufeng District, Taichung City

Authors: Ting Hsiang Chang, Cheng Zuo Tsai

Abstract:

In recent years, sports culture dominated in Taiwan, which spurred the rapid development of the sports industry. More innovative and high-tech sporting goods were developed to provide choices for consumers. Nowadays, Taiwan has gradually entered the aging society where people pay more attention to health promotion, delay of aging and other related issues among senior. However, it is an undeniable fact that moderate exercise is a great help to delay aging. Therefore, how senior select the appropriate sporting goods, including sports shoes, sportswear, sports equipment, and even the sports brands when engaged in various kinds of sports, are explored in this research. Therefore, this study sets the reference indicators by exploring the brands of sporting goods, that senior aged 50-70 choose in a fog peak district, the Taichung City, as the subjects of study by answering a questionnaire. Also, this study offers recommendations in terms of the design, marketing or selling of sporting goods for the senior, and how owners of sports brands or related sports industries should target them.

Keywords: senior, aging, sporting goods, sports brand

Procedia PDF Downloads 187
5728 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers

Authors: H. Ucar, U. Aridogan

Abstract:

Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.

Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling

Procedia PDF Downloads 162
5727 Quantifying Stakeholders’ Values of Technical and Vocational Education and Training Provision in Nigeria

Authors: Lidimma Benjamin, Nimmyel Gwakzing, Wuyep Nanyi

Abstract:

Technical and Vocational Education and Training (TVET) has many stakeholders, each with their own values and interests. This study will focus on the diversity of the values and interests within and across groups of stakeholders by quantifying the value that stakeholders attached to several quality attributes of TVET, and also find out to what extent TVET stakeholders differ in their values. The quality of TVET therefore, depends on how well it aligns with the values and interests of these stakeholders. The five stakeholders are parents, students, teachers, policy makers, and work place training supervisors. The 9 attributes are employer appreciation of students, graduation rate, obtained computer skills of students, mentoring hours in workplace learning/Students Industrial Work Experience Scheme (SIWES), challenge, structure, students’ appreciation of teachers, schooling hours, and attention to civic education. 346 respondents (comprising Parents, Students, Teachers, Policy Makers, and Workplace Training Supervisors) were repeatedly asked to rank a set of 4 programs, each with a specific value on the nine quality indicators. Conjoint analysis was used to obtain the values that the stakeholders assigned to the 9 attributes when evaluating the quality of TVET programs. Rank-ordered logistic regression was the statistical/tool used for ranking the respondents values assign to the attributes. The similarities and diversity in values and interests of the different stakeholders will be of use by both Nigerian government and TVET colleges, to improve the overall quality of education and the match between vocational programs and their stakeholders simultaneous evaluation and combination of information in product attributes. Such approach models the decision environment by confronting a respondent with choices that are close to real-life choices. Therefore, it is more realistically than traditional survey methods.

Keywords: TVET, vignette study, conjoint analysis, quality perception, educational stakeholders

Procedia PDF Downloads 64
5726 Development of Fire Douse Vehicle

Authors: Nikhil Verma, Akshay Kant Mishra, Rishabh Rastogi, Bikarama Prasad Yadav

Abstract:

Emerging fire incidents are the protuberant contributor out turning into life loss, property damage and importantly firefighters. It insinuates that a firefighting and rescue operation of the existing equipment or apparatus and their proficiency is limited, particularly in annihilating firefighting environments. The proposed methodology will help in developing a technology which can be useful in minimizing the risks and losses due to fire. In this paper, design and development of combat mini vehicle comprising of multi-purpose nozzle system is proposed which can target diverse fires simultaneously at distinct time and location. Basically, the system is semi-automated type protection system which can be manoeuvred by controller. Designing of robust vehicle based on semi-automated protection type system is consummated using SolidWorks platform. Concept of developing a robust vehicle will help to fight fires in multiple directions reducing the time required to douse multiple fires.

Keywords: fire douse vehicle, multiple fires, multi-purpose nozzle, semi-automated system

Procedia PDF Downloads 118
5725 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 315
5724 Technological Enhancements in Supply Chain Management Post COVID-19

Authors: Miran Ismail

Abstract:

COVID-19 has caused widespread disruption in all economical sectors and industries around the world. The COVID-19 lockdown measures have resulted in production halts, restrictions on persons and goods movement, border closures, logistical constraints, and a slowdown in trade and economic activity. The main subject of this paper is to leverage technology to manage the supply chain effectively and efficiently through the usage of artificial intelligence. The research methodology is based on empirical data collected through a questionnaire survey. One of the approaches utilized is a case study of industrial organizations that face obstacles such as high operational costs, large inventory levels, a lack of well-established supplier relationships, human behavior, and system issues. The main contribution of this research to the body of knowledge is the empirical insights and on supply chain sustainability performance measurement. The results provide guidelines for the selection of advanced technologies to support supply chain processes and for the design of sustainable performance measurement systems.

Keywords: information technology, artificial intelligence, supply chain management, industrial organizations

Procedia PDF Downloads 110
5723 Development of Performance Measures for the Implementation of Total Quality Management in Indian Industry

Authors: Perminderjit Singh, Sukhvir Singh

Abstract:

Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. Total Quality Management (TQM) has become a frequently used term in discussions concerning quality. Total Quality management has brought rise in demands on the organizations policy and the customers have gained more importance in the organizations focus. TQM is considered as an important management tool, which helps the organizations to satisfy their customers. In present research critical success factors includes management commitment, customer satisfaction, continuous improvement, work culture and environment, supplier quality management, training and development, employee satisfaction and product/process design are studied. A questionnaire is developed to implement these critical success factors in implementation of total quality management in Indian industry. Questionnaires filled by consulting different industrial organizations. Data collected from questionnaires is analyzed by descriptive and importance indexes.

Keywords: total quality management, critical success factor, employee satisfaction, supplier quality management, customer focus, quality information, quality measurement

Procedia PDF Downloads 460
5722 Effect of Unilateral Unoperated Ovarian Endometrioma on Responsiveness to Hyperstimulation

Authors: Abdelmaguid Ramzy, Mohamed Bahaa

Abstract:

Introduction: The effects of ovarian endometrioma on fertility outcomes with IVF have been always related to poor outcomes. Objective: To evaluate the effect of unilateral unoperated ovarian endometrioma < 2cm on the number of developing follicles and compare them with the contralateral ovary as a control. Design: Retrospective case control study. Setting: KasrEl-Aini IVF center. Patient(s): We studied 32 women with unilateral endometrioma who underwent their first IVF cycle. Methods: 32 Patients aged between 20-35 years selected for IVF who were diagnosed with one unilateral endometrioma (diameter <2 cm) and who did not undergo previous ovarian surgery were retrospectively identified. The number of follicles > 17 mm during folliculometry on the day of HCG trigger in the ovary that contained endometrioma were compared with those from the contralateral ovary. They were all hyperstimulated using long protocol with (225-300 IU) gonadotrophins. Primary outcome: The number of follicles > 17 mm during folliculometry on the day of HCG trigger. Result(s): The mean ± SD age, Day 3 serum FSH and LH were 27± 3.7 years, 5.8 ± 1.6 IU/ml and 4.5 ± 1.7 IU/ml respectively. There was no significant difference in the number of follicles > 17 mm on the day of HCG trigger in the ovary that contained endometrioma (4.4 ±2.5) and in the opposite ovary (4.5 ± 2.8) (P= 0.48). Conclusion: The presence of ovarian endometrioma in a controlled ovarian hyperstimulation cycle for IVF treatment is not associated with a reduced number of follicles > 17 mm during folliculometry on the day of HCG trigger.

Keywords: endometrioma, folliculometry, hyperstimulation, fertility

Procedia PDF Downloads 198
5721 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan

Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam

Abstract:

A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.

Keywords: water productivity, water deficit, sunflower, plant spacing

Procedia PDF Downloads 332
5720 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications

Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita

Abstract:

Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.

Keywords: microbioreactor, cell-culture, fermentation, microfluidics

Procedia PDF Downloads 394
5719 Changing Pedagogy from Segregation to Inclusion: A Phenomenological Case Study of Ten Special Educators

Authors: Monique Somma

Abstract:

As special education service delivery models are shifting in order to better meet the academic and social rights of students with exceptionalities, teaching practices must also align with these goals. This phenomenological case study explored the change experiences of special education teachers who have transitioned from teaching in a self-contained special education class to an inclusive class setting. Ten special educators who had recently changed their teaching roles to inclusive classrooms, completed surveys and participated in a focus group. Of the original ten educators, five chose to participate further in individual interviews. Data collected from the three methods was examined and compared for common themes. Emergent themes included, support and training, attitudes and perceptions, inclusive practice, growth and change, and teaching practice. The overall findings indicated that despite their special education training, these educators were challenged by their own beliefs and expectations, the attitudes of others and systematic barriers in the education system. They were equally surprised by the overall social and academic performance of students with exceptionalities in inclusive classes, as well as, the social and academic growth and development of the other students in the class. Over the course of their careers, they all identified an overall personal pedagogical shift, to some degree or another, which they contributed to the successful experiences of inclusion they had. They also recognized that collaborating with others was essential for inclusion to be successful. The findings from this study suggest several implications for professional development and training needs specific to special education teachers moving into inclusive settings. Maximizing the skills of teachers with special education experience in a Professional Learning Community (PLC) and mentorship opportunities would be beneficial to all staffs working toward creating inclusive classrooms and schools.

Keywords: attitudes and perceptions, inclusion of students with exceptionalities, special education teachers, teacher change

Procedia PDF Downloads 218
5718 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.

Keywords: multi objective optimization, pareto front, composite patch, cracked pipe

Procedia PDF Downloads 299
5717 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves

Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare

Abstract:

The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.

Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve

Procedia PDF Downloads 19
5716 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 287
5715 Effect of SPS Parameters on the Densification of ZrB2-Based Composites

Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh

Abstract:

Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.

Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness

Procedia PDF Downloads 396
5714 Analyzing the Factors Effecting Ceramic Porosity Using Integrated Taguchi-Fuzzy Method

Authors: Enes Furkan Erkan, Özer Uygun, Halil Ibrahim Demir, Zeynep Demir

Abstract:

Companies require increase in quality perception level of their products due to competitive conditions. As a result, the tendency to quality and researches to develop the quality are increasing day by day. Cost and time constraints are the biggest problems that companies face in their quality improvement efforts. In this study, factors that affect the porosity of ceramic products are determined and analyzed in a factory producing ceramic tiles. Then, Taguchi method is used in the design phase in order to decrease the number of tests to be performed by means of orthogonal sequences. The most important factors affecting the porosity of ceramic tiles are determined using Taguchi and ANOVA analysis. Based on the analyses, the most affecting factors are determined to be used in the fuzzy implementation stage. Then, the fuzzy rules were established with the factors affecting porosity by the experts’ opinion. Thus, porosity result could be obtained not only for the specified factor levels but also for intermediate values. In this way, it has been provided convenience to the factory in terms of cost and quality improvement.

Keywords: fuzzy, porosity, Taguchi Method, Taguchi-Fuzzy

Procedia PDF Downloads 419
5713 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring

Abstract:

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Keywords: dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA

Procedia PDF Downloads 161
5712 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez

Abstract:

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Keywords: ANFIS, olive cake, polyols, saccharides

Procedia PDF Downloads 132
5711 The Impact of Technological Advancement on Academic Performance of Mathematics Students in Tertiary Institutions in Ekiti State, Nigeria

Authors: Odunayo E. Popoola, Charles A. Aladesaye, Sunday O. Gbenro

Abstract:

The study investigated the impact of technological advancement on the academic performance of Mathematics students in tertiary institutions in Ekiti State, Nigeria. The quasi-experimental research design was adopted for the study. The population for the study consisted of all the 100 level undergraduates and all Mathematics lecturers in the Department of Mathematics in all the five tertiary institutions in the State. The sample of this study was made of one hundred (100) students and fifty (50) lecturers randomly selected using stratified sampling technique. Hypotheses were postulated to find out whether (i) advancement in technology influences the academic performance of students in Mathematics (ii) teaching method and gender disparity influences the academic performance of students in Mathematics. The study revealed that teaching method, gender, and technology influence academic performance of students in Mathematics. Based on the findings, it is recommended that curriculum and assessment in school Mathematics should explicitly require that all undergraduate become proficient in using digital technologies for mathematical purposes so as to enhance the better performance of students in Mathematics.

Keywords: mathematics, performance, tertiary institutions, technology

Procedia PDF Downloads 162