Search results for: gas phase collection efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12942

Search results for: gas phase collection efficiency

942 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy

Authors: Ozgul Kartal, Wade Tillett, Lyn D. English

Abstract:

Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.

Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education

Procedia PDF Downloads 53
941 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 28
940 Catalytic Alkylation of C2-C4 Hydrocarbons

Authors: Bolysbek Utelbayev, Tasmagambetova Aigerim, Toktasyn Raila, Markayev Yergali, Myrzakhanov Maxat

Abstract:

Intensive development of secondary processes of destructive processing of crude oil has led to the occurrence of oil refining factories resources of C2-C4 hydrocarbons. Except for oil gases also contain basically C2-C4 hydrocarbon gases where some of the amounts are burned. All these data has induced interest to the study of producing alkylate from hydrocarbons С2-С4 which being as components of motor fuels. The purpose of this work was studying transformation propane-propene, butane-butene fractions at the presence of the ruthenium-chromic support catalyst whereas the carrier is served pillar - structural montmorillonite containing in native bentonite clay. In this work is considered condition and structure of the bentonite clay from the South-Kazakhstan area of the Republic Kazakhstan. For preparation rhodium support catalyst (0,5-1,0 mass. % Rh) was used chloride of rhodium-RhCl3∙3H2O, as a carrier was used modified bentonite clay. For modifying natural clay to pillar structural form were used polyhydroxy complexes of chromium. To aqueous solution of chloride chromium gradually flowed the solution of sodium hydroxide at gradual hashing up to pH~3-4. The concentration of chloride chromium was paid off proceeding from calculation 5-30 mmole Cr3+ per gram clay. Suspension bentonite (~1,0 mass. %) received by intensive washing it in water during 4 h, pH-water extract of clay makes -8-9. The acidity of environment supervised by means of digital pH meter OP-208/1. In order to prevent coagulation of a solution polyhydroxy complexes of chromium, it was slowly added to a suspension of clay. "Reserve of basicity" Cr3+:/OH-allowing to prevent coagulation chloride of rhodium made 1/3. After endurance processed suspensions of clay during 24 h, a deposit was washed by water and condensed. The sample, after separate from a liquid phase, dried at first at the room temperature, and then at 110°C (2h) with the subsequent rise the temperature up to 180°C (4h). After cooling the firm mass was pounded to a powder, it was shifted infractions with the certain sizes of particles. Fractions of particles modifying clay in the further were impregnated with an aqueous solution with rhodium-RhCl3∙3H2O (0,5-1,0 mаss % Rh ). Obtained pillar structural bentonite approaches heat resistance and its porous structure above the 773K. Pillar structural bentonite was used for preparation 1.0% Ru/Carrier (modifying bentonite) support catalysts where is realised alkylation of C2-C4 hydrocarbons. The process of alkylation is carried out at a partial pressure of hydrogen 0.5-1.0MPa. Outcome 2.2.4 three methyl pentane and 2.2.3 trimethylpentane achieved 40%. At alkylation butane-butene mixture outcome of the isooctane is achieved 60%. In this condition of studying the ethene is not undergoing to alkylation.

Keywords: alkylation, butene, pillar structure, ruthenium catalyst

Procedia PDF Downloads 393
939 Anabasine Intoxication and its Relation to Plant Development Stages

Authors: Thaís T. Valério Caetano, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein

Abstract:

Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil for a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.

Keywords: nicotiana glauca graham, global invasive species database, alkaloids, toxic

Procedia PDF Downloads 70
938 CO2 Methanation over Ru-Ni/CeO2 Catalysts

Authors: Nathalie Elia, Samer Aouad, Jane Estephane, Christophe Poupin, Bilal Nsouli, Edmond Abi Aad

Abstract:

Carbon dioxide is one of the main contributors to greenhouse effect and hence to climate change. As a result, the methanation reaction CO2(g) + 4H2(g) →CH4(g) + 2H2O (ΔH°298 = -165 kJ/mol), also known as Sabatier reaction, has received great interest as a process for the valorization of the greenhouse gas CO2 into methane which is a hydrogen-carrier gas. The methanation of CO2 is an exothermic reaction favored at low temperature and high pressure. However, this reaction requires a high energy input to activate the very stable CO2 molecule, and exhibits serious kinetic limitations. Consequently, the development of active and stable catalysts is essential to overcome these difficulties. Catalytic methanation of CO2 has been studied using catalysts containing Rh, Pd, Ru, Co and Ni on various supports. Among them, the Ni-based catalysts have been extensively investigated under various conditions for their comparable methanation activity with highly improved cost-efficiency. The addition of promoters are common strategies to increase the performance and stability of Ni catalysts. In this work, a small amount of Ru was used as a promoter for Ni catalysts supported on ceria and tested in the CO2 methanation reaction. The nickel loading was 5 wt. % and ruthenium loading is 0.5wt. %. The catalysts were prepared by successive impregnation method using Ni(NO3)2.6H2O and Ru(NO)(NO3)3 as precursors. The calcined support was impregnated with Ni(NO3)2.6H2O, dried, calcined at 600°C for 4h, and afterward, was impregnated with Ru(NO)(NO3)3. The resulting solid was dried and calcined at 600°C for 4 h. Supported monometallic catalysts were prepared likewise. The prepared solids Ru(0.5%)/CeO2, Ni(5%)/CeO2 and Ru(0.5%)-Ni(5%)/CeO2 were then reduced prior to the catalytic test under a flow of 50% H2/Ar (50 ml/min) for 4h at 500°C. Finally, their catalytic performances were evaluated in the CO2 methanation reaction, in the temperature range of 100–350°C by using a gaseous mixture of CO2 (10%) and H2 (40%) in Ar balanced at a total flow rate of 100 mL/min. The effect of pressure on the CO2 methanation was studied by varying the pressure between 1 and 10 bar. The various catalysts showed negligible CO2 conversion at temperatures lower than 250°C. The conversion of CO2 increases with increasing reaction temperature. The addition of Ru as promoter to Ni/CeO2 improved the CO2 methanation. It was shown that the CO2 conversion increases from 15 to 70% at 350°C and 1 bar. The effect of pressure on CO2 conversion was also studied. Increasing the pressure from 1 to 5 bar increases the CO2 conversion from 70% to 87%, while increasing the pressure from 5 to 10 bar increases the CO2 conversion from 87% to 91%. Ru–Ni catalysts showed excellent catalytic performance in the methanation of carbon dioxide with respect to Ni catalysts. Therefore the addition of Ru onto Ni catalysts improved remarkably the catalytic activity of Ni catalysts. It was also found that the pressure plays an important role in improving the CO2 methanation.

Keywords: CO2, methanation, nickel, ruthenium

Procedia PDF Downloads 210
937 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa

Authors: Ayanda Ndokwana, Stanley Fore

Abstract:

Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.

Keywords: bioethanol, economic evaluation, maize, profitability indicators

Procedia PDF Downloads 218
936 Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)

Authors: Sultan Ben Jaber

Abstract:

Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates.

Keywords: surface-enhanced infrared absorption (SEIRA), gold nanoparticles (AuNPs), amphetamines, methylene dioxy- methamphetamine (MDMA), enhancement factor

Procedia PDF Downloads 59
935 Navigating through Organizational Change: TAM-Based Manual for Digital Skills and Safety Transitions

Authors: Margarida Porfírio Tomás, Paula Pereira, José Palma Oliveira

Abstract:

Robotic grasping is advancing rapidly, but transferring techniques from rigid to deformable objects remains a challenge. Deformable and flexible items, such as food containers, demand nuanced handling due to their changing shapes. Bridging this gap is crucial for applications in food processing, surgical robotics, and household assistance. AGILEHAND, a Horizon project, focuses on developing advanced technologies for sorting, handling, and packaging soft and deformable products autonomously. These technologies serve as strategic tools to enhance flexibility, agility, and reconfigurability within the production and logistics systems of European manufacturing companies. Key components include intelligent detection, self-adaptive handling, efficient sorting, and agile, rapid reconfiguration. The overarching goal is to optimize work environments and equipment, ensuring both efficiency and safety. As new technologies emerge in the food industry, there will be some implications, such as labour force, safety problems and acceptance of the new technologies. To overcome these implications, AGILEHAND emphasizes the integration of social sciences and humanities, for example, the application of the Technology Acceptance Model (TAM). The project aims to create a change management manual, that will outline strategies for developing digital skills and managing health and safety transitions. It will also provide best practices and models for organizational change. Additionally, AGILEHAND will design effective training programs to enhance employee skills and knowledge. This information will be obtained through a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. The project will explore how organizations adapt during periods of change and identify factors influencing employee motivation and job satisfaction. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND).

Keywords: change management, technology acceptance model, organizational change, health and safety

Procedia PDF Downloads 35
934 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 303
933 Internet-Of-Things and Ergonomics, Increasing Productivity and Reducing Waste: A Case Study

Authors: V. Jaime Contreras, S. Iliana Nunez, S. Mario Sanchez

Abstract:

Inside a manufacturing facility, we can find innumerable automatic and manual operations, all of which are relevant to the production process. Some of these processes add more value to the products more than others. Manual operations tend to add value to the product since they can be found in the final assembly area o final operations of the process. In this areas, where a mistake or accident can increase the cost of waste exponentially. To reduce or mitigate these costly mistakes, one approach is to rely on automation to eliminate the operator from the production line - requires a hefty investment and development of specialized machinery. In our approach, the center of the solution is the operator through sufficient and adequate instrumentation, real-time reporting and ergonomics. Efficiency and reduced cycle time can be achieved thorough the integration of Internet-of-Things (IoT) ready technologies into assembly operations to enhance the ergonomics of the workstations. Augmented reality visual aids, RFID triggered personalized workstation dimensions and real-time data transfer and reporting can help achieve these goals. In this case study, a standard work cell will be used for real-life data acquisition and a simulation software to extend the data points beyond the test cycle. Three comparison scenarios will run in the work cell. Each scenario will introduce a dimension of the ergonomics to measure its impact independently. Furthermore, the separate test will determine the limitations of the technology and provide a reference for operating costs and investment required. With the ability, to monitor costs, productivity, cycle time and scrap/waste in real-time the ROI (return on investment) can be determined at the different levels to integration. This case study will help to show that ergonomics in the assembly lines can make significant impact when IoT technologies are introduced. Ergonomics can effectively reduce waste and increase productivity with minimal investment if compared with setting up to custom machine.

Keywords: augmented reality visual aids, ergonomics, real-time data acquisition and reporting, RFID triggered workstation dimensions

Procedia PDF Downloads 208
932 Medical Decision-Making in Advanced Dementia from the Family Caregiver Perspective: A Qualitative Study

Authors: Elzbieta Sikorska-Simmons

Abstract:

Advanced dementia is a progressive terminal brain disease that is accompanied by a syndrome of difficult to manage symptoms and complications that eventually lead to death. The management of advanced dementia poses major challenges to family caregivers who act as patient health care proxies in making medical treatment decisions. Little is known, however, about how they manage advanced dementia and how their treatment choices influence the quality of patient life. This prospective qualitative study examines the key medical treatment decisions that family caregivers make while managing advanced dementia. The term ‘family caregiver’ refers to a relative or a friend who is primarily responsible for managing patient’s medical care needs and legally authorized to give informed consent for medical treatments. Medical decision-making implies a process of choosing between treatment options in response to patient’s medical care needs (e.g., worsening comorbid conditions, pain, infections, acute medical events). Family caregivers engage in this process when they actively seek treatments or follow recommendations by healthcare professionals. Better understanding of medical decision-making from the family caregiver perspective is needed to design interventions that maximize the quality of patient life and limit inappropriate treatments. Data were collected in three waves of semi-structured interviews with 20 family caregivers for patients with advanced dementia. A purposive sample of 20 family caregivers was recruited from a senior care center in Central Florida. The qualitative personal interviews were conducted by the author in 4-5 months intervals. The ethical approval for the study was obtained prior to the data collection. Advanced dementia was operationalized as stage five or higher on the Global Deterioration Scale (GDS) (i.e., starting with the GDS score of five, patients are no longer able survive without assistance due to major cognitive and functional impairments). Information about patients’ GDS scores was obtained from the Center’s Medical Director, who had an in-depth knowledge of each patient’s health and medical treatment history. All interviews were audiotaped and transcribed verbatim. The qualitative data analysis was conducted to answer the following research questions: 1) what treatment decisions do family caregivers make while managing the symptoms of advanced dementia and 2) how do these treatment decisions influence the quality of patient life? To validate the results, the author asked each participating family caregiver if the summarized findings accurately captured his/her experiences. The identified medical decisions ranged from seeking specialist medical care to end-of-life care. The most common decisions were related to arranging medical appointments, medication management, seeking treatments for pain and other symptoms, nursing home placement, and accessing community-based healthcare services. The most challenging and consequential decisions were related to the management of acute complications, hospitalizations, and discontinuation of treatments. Decisions that had the greatest impact on the quality of patient life and survival were triggered by traumatic falls, worsening psychiatric symptoms, and aspiration pneumonia. The study findings have important implications for geriatric nurses in the context of patient/caregiver-centered dementia care. Innovative nursing approaches are needed to support family caregivers to effectively manage medical care needs of patients with advanced dementia.

Keywords: advanced dementia, family caregiver, medical decision-making, symptom management

Procedia PDF Downloads 115
931 Developing a Systemic Monoclonal Antibody Therapy for the Treatment of Large Burn Injuries

Authors: Alireza Hassanshahi, Xanthe Strudwick, Zlatko Kopecki, Allison J Cowin

Abstract:

Studies have shown that Flightless (Flii) is elevated in human wounds, including burns, and reducing the level of Flii is a promising approach for improving wound repair and reducing scar formation. The most effective approach has been to neutralise Flii activity using localized, intradermal application of function blocking monoclonal antibodies. However, large surface area burns are difficult to treat by intradermal injection of therapeutics, so the aim of this study was to investigate if a systemic injection of a monoclonal antibody against Flii could improve healing in mice following burn injury. Flii neutralizing antibodies (FnAbs) were labelled with Alxa-Fluor-680 for biodistribution studies and the healing effects of systemically administered FnAbs to mice with burn injuries. A partial thickness, 7% (70mm2) total body surface area scald burn injury was created on the dorsal surface of mice (n=10/group), and 100µL of Alexa-Flour-680-labeled FnAbs were injected into the intraperitoneal cavity (IP) at time of injury. The burns were imaged on days 0, 1, 2, 3, 4, and 7 using IVIS Lumina S5 Imaging System, and healing was assessed macroscopically, histologically, and using immunohistochemistry. Fluorescent radiance efficiency measurements showed that IP injected Alexa-Fluor-680-FnAbs localized at the site of burn injury from day 1, remaining there for the whole 7-day study. The burns treated with FnAbs showed a reduction in macroscopic wound area and an increased rate of epithelialization compared to controls. Immunohistochemistry for NIMP-R14 showed a reduction in the inflammatory infiltrate, while CD31/VEGF staining showed improved angiogenesis post-systemic FnAb treatment. These results suggest that systemically administered FnAbs are active within the burn site and can improve healing outcomes. The clinical application of systemically injected Flii monoclonal antibodies could therefore be a potential approach for promoting the healing of large surface area burns immediately after injury.

Keywords: biodistribution, burn, flightless, systemic, fnAbs

Procedia PDF Downloads 162
930 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip

Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac

Abstract:

Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.

Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating

Procedia PDF Downloads 208
929 Preliminary Results on Marine Debris Classification in The Island of Mykonos (Greece) via Coastal and Underwater Clean up over 2016-20: A Successful Case of Recycling Plastics into Useful Daily Items

Authors: Eleni Akritopoulou, Katerina Topouzoglou

Abstract:

The last 20 years marine debris has been identified as one of the main marine pollution sources caused by anthropogenic activities. Plastics has reached the farthest marine areas of the planet affecting all marine trophic levels including the, recently discovered, amphipoda Eurythenes plasticus inhabiting Mariana Trench to large cetaceans, marine reptiles and sea birds causing immunodeficiency disorders, deteriorating health and death overtime. For the time period 2016-20, in the framework of the national initiative ‘Keep Aegean Blue”, All for Blue team has been collecting marine debris (coastline and underwater) following a modified in situ MEDSEALITTER monitoring protocol from eight Greek islands. After collection, marine debris was weighted, sorted and categorised according to material; plastic (PL), glass (G), metal (M), wood (W), rubber (R), cloth (CL), paper (P), mixed (MX). The goal of the project included the documentation of marine debris sources, human trends, waste management and public marine environmental awareness. Waste management was focused on plastics recycling and utilisation into daily useful products. This research is focused on the island of Mykonos due to its continuous touristic activity and lack of scientific information. In overall, a field work area of 1.832.856 m2 was cleaned up yielding 5092 kg of marine debris. The preliminary results indicated PL as main source of marine debris (62,8%) followed by M (15,5%), GL (13,2%) and MX (2,8%). Main items found were fishing tools (lines, nets), disposable cutlery, cups and straws, cigarette butts, flip flops and other items like plastic boat compartments. In collaboration with a local company for plastic management and the Circular Economy and Eco Innovation Institute (Sweden), all plastic debris was recycled. Granulation process was applied transforming plastic into building materials used for refugees’ houses, litter bins bought by municipalities and schools and, other items like shower components. In terms of volunteering and attendance in public awareness seminars, there was a raise of interest by 63% from different age ranges and professions. Regardless, the research being fairly new for Mykonos island and logistics issues potentially affected systemic sampling, it appeared that plastic debris is the main littering source attributed, possibly to the intense touristic activity of the island all year around. However, marine environmental awareness activities were pointed out to be an effective tool in forming public perception against marine debris and, alter the daily habits of local society. Since the beginning of this project, three new local environmental teams were formed against marine pollution supported by the local authorities and stakeholders. The continuous need and request for the production of items made by recycled marine debris appeared to be beneficial socio-economically to the local community and actions are taken to expand the project nationally. Finally, as an ongoing project and whilst, new scientific information is collected, further funding and research is needed.

Keywords: Greece, marine debris, marine environmental awareness, Mykonos island, plastics debris, plastic granulation, recycled plastic, tourism, waste management

Procedia PDF Downloads 103
928 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet

Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez

Abstract:

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.

Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles

Procedia PDF Downloads 15
927 Influence of Genotype, Explant, and Hormone Treatment on Agrobacterium-Transformation Success in Salix Callus Culture

Authors: Lukas J. Evans, Danilo D. Fernando

Abstract:

Shrub willows (Salix spp.) have many characteristics which make them suitable for a variety of applications such as riparian zone buffers, environmental contaminant sequestration, living snow fences, and biofuel production. In some cases, these functions are limited due to physical or financial obstacles associated with the number of individuals needed to reasonably satisfy that purpose. One way to increase the efficiency of willows is to bioengineer them with the genetic improvements suitable for the desired use. To accomplish this goal, an optimized in vitro transformation protocol via Agrobacterium tumefaciens is necessary to reliably express genes of interest. Therefore, the aim of this study is to observe the influence of tissue culture with different willow cultivars, hormones, and explants on the percentage of calli expressing reporter gene green florescent protein (GFP) to find ideal transformation conditions. Each callus was produced from 1 month old open-pollinated seedlings of three Salix miyabeana cultivars (‘SX61’, ‘WT1’, and ‘WT2’) from three different explants (lamina, petiole, and internodes). Explants were cultured for 1 month on an MS media with different concentrations of 6-Benzylaminopurine (BAP) and 1-Naphthaleneacetic acid (NAA) (No hormones, 1 mg⁻¹L BAP only, 3 mg⁻¹L NAA only, 1 mg⁻¹L BAP and 3 mg⁻¹L NAA, and 3 mg⁻¹L BAP and 1 mg⁻¹L NAA) to produce a callus. Samples were then treated with Agrobacterium tumefaciens at an OD600 of 0.6-0.8 to insert the transgene GFP for 30 minutes, co-cultivated for 72 hours, and selected on the same media type they were cultured on with added 7.5 mg⁻¹L of Hygromycin for 1 week before GFP visualization under a UV dissecting scope. Percentage of GFP expressing calli as well as the average number of fluorescing GFP units per callus were recorded and results were evaluated through an ANOVA test (α = 0.05). The WT1 internode-derived calli on media with 3 mg-1L NAA+1 mg⁻¹L BAP and mg⁻¹L BAP alone produced a significantly higher percentage of GFP expressing calli than each other group (19.1% and 19.4%, respectively). Additionally, The WT1 internode group cultured with 3 mg⁻¹L NAA+1 mg⁻¹L BAP produced an average of 2.89 GFP units per callus while the group cultivated with 1 mg⁻¹L BAP produced an average of 0.84 GFP units per callus. In conclusion, genotype, explant choice, and hormones all play a significant role in increasing successful transformation in willows. Future studies to produce whole callus GFP expression and subsequent plantlet regeneration are necessary for a complete willow transformation protocol.

Keywords: agrobacterium, callus, Salix, tissue culture

Procedia PDF Downloads 117
926 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure

Authors: Xiaoling Ren, Guidong Yang

Abstract:

Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.

Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃

Procedia PDF Downloads 160
925 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 155
924 The Affective Motivation of Women Miners in Ghana

Authors: Adesuwa Omorede, Rufai Haruna Kilu

Abstract:

Affective motivation (motivation that is emotionally laden usually related to affect, passion, emotions, moods) in the workplace stimulates individuals to reinforce, persist and commit to their task, which leads to the individual and organizational performance. This leads individuals to reach goals especially in situations where task are highly challenging and hostile. In such situations, individuals are more disposed to be more creative, innovative and see new opportunities from the loopholes in their workplace. However, when individuals feel displaced and less important, an adverse reaction may suffice which may be detrimental to the organization and its performance. One sector where affective motivation is eminently present and relevant, is the mining industry. Due to its intense work environment; mostly dominated by men and masculinity cultures; and deliberate exclusion of women in this environment which, makes the women working in these environments to feel marginalized. In Ghana, the mining industry is mostly seen as a very physical environment especially underground and mostly considerd as 'no place for a woman'. Despite the fact that these women feel less 'needed' or 'appreciated' in such environments, they still have to juggle between intense work shifts; face violence and other health risks with their families, which put a strain on their affective motivational reaction. Beyond these challenges, however, several mining companies in Ghana today are working towards providing a fair and equal working situation for both men and women miners, by recognizing them as key stakeholders, as well as including them in the stages of mining projects from the planning and designing phase to the evaluation and implementation stage. Drawing from the psychology and gender literature, this study takes a narrative approach to identify and understand the shifting gender dynamics within the mine works in Ghana, occasioning a change in background disposition of miners, which leads to more women taking up mine jobs in the country. In doing so, a qualitative study was conducted using semi-structured interviews from Ghana. Several women working within the mining industries in Ghana shared their experiences and how they felt and still feel in their workplace. In addition, archival documents were gathered to support the findings. The results suggest a change in enrolment regimes in a mining and technology university in Ghana, making room for a more gender equal enrolments in the university. A renowned university that train and feed mine work professional into the industry. The results further acknowledge gender equal and diversity recruitment policies and initiatives among the mining companies of Ghana. This study contributes to the psychology and gender literature by highlighting the hindrances women face in the mining industry as well as highlighting several of their affective reactions towards gender inequality. The study also provides several suggestions for decision makers in the mining industry of what can be done in the future to reduce the gender inequality gap within the industry.

Keywords: affective motivation, gender shape shifting, mining industry, women miners

Procedia PDF Downloads 288
923 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing

Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou

Abstract:

The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.

Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation

Procedia PDF Downloads 105
922 Anabasine Intoxication and Its Relation to Plant Develoment Stages

Authors: Thaís T. Valério Caetano, Lívia de Carvalho Ferreira, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein

Abstract:

Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil during a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.

Keywords: alkaloid production, invasive species, nicotiana glauca, plant phenology

Procedia PDF Downloads 71
921 A Case Study of Determining the Times of Overhauls and the Number of Spare Parts for Repairable Items in Rolling Stocks with Simulation

Authors: Ji Young Lee, Jong Woon Kim

Abstract:

It is essential to secure high availability of railway vehicles to realize high quality and efficiency of railway service. Once the availability decreased, planned railway service could not be provided or more cars need to be reserved. additional cars need to be purchased or the frequency of railway service could be decreased. Such situation would be a big loss in terms of quality and cost related to railway service. Therefore, we make various efforts to get high availability of railway vehicles. Because it is a big loss to operators, we make various efforts to get high availability of railway vehicles. To secure high availability, the idle time of the vehicle needs to be reduced and the following methods are applied to railway vehicles. First, through modularization design, exchange time for line replaceable units is reduced which makes railway vehicles could be put into the service quickly. Second, to reduce periodic preventive maintenance time, preventive maintenance with short period would be proceeded test oriented to minimize the maintenance time, and reliability is secured through overhauls for each main component. With such design changes for railway vehicles, modularized components are exchanged first at the time of vehicle failure or overhaul so that vehicles could be put into the service quickly and exchanged components are repaired or overhauled. Therefore, spare components are required for any future failures or overhauls. And, as components are modularized and costs for components are high, it is considerably important to get reasonable quantities of spare components. Especially, when a number of railway vehicles were put into the service simultaneously, the time of overhauls come almost at the same time. Thus, for some vehicles, components need to be exchanged and overhauled before appointed overhaul period so that these components could be secured as spare parts for the next vehicle’s component overhaul. For this reason, components overhaul time and spare parts quantities should be decided at the same time. This study deals with the time of overhauls for repairable components of railway vehicles and the calculation of spare parts quantities in consideration of future failure/overhauls. However, as railway vehicles are used according to the service schedule, maintenance work cannot be proceeded after the service was closed thus it is quite difficult to resolve this situation mathematically. In this study, Simulation software system is used in this study for analyzing the time of overhauls for repairable components of railway vehicles and the spare parts for the railway systems.

Keywords: overhaul time, rolling stocks, simulation, spare parts

Procedia PDF Downloads 329
920 Rebuilding Beyond Bricks: The Environmental Psychological Foundations of Community Healing After the Lytton Creek Fire

Authors: Tugba Altin

Abstract:

In a time characterized by escalating climate change impacts, communities globally face extreme events with deep-reaching tangible and intangible consequences. At the intersection of these phenomena lies the profound impact on the cultural and emotional connections that individuals forge with their environments. This study casts a spotlight on the Lytton Creek Fire of 2021, showcasing it as an exemplar of both the visible destruction brought by such events and the more covert yet deeply impactful disturbances to place attachment (PA). Defined as the emotional and cognitive bond individuals form with their surroundings, PA is critical in comprehending how such catastrophic events reshape cultural identity and the bond with the land. Against the stark backdrop of the Lytton Creek Fire's devastation, the research seeks to unpack the multilayered dynamics of PA amidst the tangible wreckage and the intangible repercussions such as emotional distress and disrupted cultural landscapes. Delving deeper, it examines how affected populations renegotiate their affiliations with these drastically altered environments, grappling with both the tangible loss of their homes and the intangible challenges to solace, identity, and community cohesion. This exploration is instrumental in the broader climate change narrative, as it offers crucial insights into how these personal-place relationships can influence and shape climate adaptation and recovery strategies. Departing from traditional data collection methodologies, this study adopts an interpretive phenomenological approach enriched by hermeneutic insights and places the experiences of the Lytton community and its co-researchers at its core. Instead of conventional interviews, innovative methods like walking audio sessions and photo elicitation are employed. These techniques allow participants to immerse themselves back into the environment, reviving and voicing their memories and emotions in real-time. Walking audio captures reflections on spatial narratives after the trauma, whereas photo voices encapsulate the intangible emotions, presenting a visual representation of place-based experiences. Key findings emphasize the indispensability of addressing both the tangible and intangible traumas in community recovery efforts post-disaster. The profound changes to the cultural landscape and the subsequent shifts in PA underscore the need for holistic, culturally attuned, and emotionally insightful adaptation strategies. These strategies, rooted in the lived experiences and testimonies of the affected individuals, promise more resonant and effective recovery efforts. The research further contributes to climate change discourse, highlighting the intertwined pathways of tangible reconstruction and the essentiality of emotional and cultural rejuvenation. Furthermore, the use of participatory methodologies in this inquiry challenges traditional research paradigms, pointing to potential evolutionary shifts in qualitative research norms. Ultimately, this study underscores the need for a more integrative approach in addressing the aftermath of environmental disasters, ensuring that both physical and emotional rebuilding are given equal emphasis.

Keywords: place attachment, community recovery, disaster reponse, sensory responses, intangible traumas, visual methodologies

Procedia PDF Downloads 47
919 The Appropriate Number of Test Items That a Classroom-Based Reading Assessment Should Include: A Generalizability Analysis

Authors: Jui-Teng Liao

Abstract:

The selected-response (SR) format has been commonly adopted to assess academic reading in both formal and informal testing (i.e., standardized assessment and classroom assessment) because of its strengths in content validity, construct validity, as well as scoring objectivity and efficiency. When developing a second language (L2) reading test, researchers indicate that the longer the test (e.g., more test items) is, the higher reliability and validity the test is likely to produce. However, previous studies have not provided specific guidelines regarding the optimal length of a test or the most suitable number of test items or reading passages. Additionally, reading tests often include different question types (e.g., factual, vocabulary, inferential) that require varying degrees of reading comprehension and cognitive processes. Therefore, it is important to investigate the impact of question types on the number of items in relation to the score reliability of L2 reading tests. Given the popularity of the SR question format and its impact on assessment results on teaching and learning, it is necessary to investigate the degree to which such a question format can reliably measure learners’ L2 reading comprehension. The present study, therefore, adopted the generalizability (G) theory to investigate the score reliability of the SR format in L2 reading tests focusing on how many test items a reading test should include. Specifically, this study aimed to investigate the interaction between question types and the number of items, providing insights into the appropriate item count for different types of questions. G theory is a comprehensive statistical framework used for estimating the score reliability of tests and validating their results. Data were collected from 108 English as a second language student who completed an English reading test comprising factual, vocabulary, and inferential questions in the SR format. The computer program mGENOVA was utilized to analyze the data using multivariate designs (i.e., scenarios). Based on the results of G theory analyses, the findings indicated that the number of test items had a critical impact on the score reliability of an L2 reading test. Furthermore, the findings revealed that different types of reading questions required varying numbers of test items for reliable assessment of learners’ L2 reading proficiency. Further implications for teaching practice and classroom-based assessments are discussed.

Keywords: second language reading assessment, validity and reliability, Generalizability theory, Academic reading, Question format

Procedia PDF Downloads 74
918 RE:SOUNDING a 2000-Year-Old Vietnamese Dong Son Bronze Drum; Artist-Led Collaborations outside the Museum to Challenge the Impasse of Repatriating and Rematriating Cultural Instruments

Authors: H. A. J. Nguyen, V. A. Pham

Abstract:

RE:SOUNDING is an ongoing research project and artwork seeking to return the sound and knowledge of Dong Son bronze drums back to contemporary musicians. Colonial collections of ethnographic instruments are problematic in how they commit acts of conceptual, cultural, and acoustic silencing. The collection (or more honestly), the plagiarism, and pillaging of these instruments have systemically separated them from living and breathing cultures. This includes diasporic communities, who have come to resettle in close proximity - but still have little access - to the museums and galleries that display their cultural objects. Despite recent attempts to 'open up' and 'recognise' the tensions and violence of these ethnographic collections, many museums continue to structurally organize and reproduce knowledge with the same procedural distance and limitations of imperial condescension. Impatient with the slowness of these museums, our diaspora led collaborations participated in the opaque economy of the auction market to gain access and begin the process of digitally recording and archiving the actual sounds of the ancient Dong Son drum. This self-directed, self-initiated artwork not only acoustically reinvigorated an ancient instrument but redistributed these sonic materials back to contemporary musicians, composers, and their diasporic communities throughout Vietnam, South East Asia, and Australia. Our methodologies not only highlight the persistent inflexibility of museum infrastructures but demand that museums refrain from their paternalistic practice of risk-averse ownership, to seriously engage with new technologies and political formations that require all public institutions to be held accountable for the ethical and intellectual viability of their colonial collections. The integrated and practical resolve of diasporic artists and their communities are more than capable of working with new technologies to reclaim and reinvigorate what is culturally and spiritually theirs. The motivation to rematriate – as opposed to merely repatriate – the acoustic legacies of these instruments to contemporary musicians and artists is a new model for decolonial and restorative practices. Exposing the inadequacies of western scholarship that continues to treat these instruments as discreet, disembodied, and detached artifacts, these collaborative strategies have thus far produced a wealth of new knowledge – new to the west perhaps – but not that new to these, our own communities. This includes the little-acknowledged fact that the Dong Son drum were political instruments of war and technology, rather than their simplistic description in the museum and western academia as agrarian instruments of fertility and harvest. Through the collective and continued sharing of knowledge and sound materials produced from this research, these drums are gaining a contemporary relevance beyond the cultural silencing of the museum display cabinet. Acknowledgement: We acknowledge the Wurundjeri and Boon Wurrung of the Kulin Nation and the Gadigal of the Eora Nation where we began this project. We pay our respects to the Peoples, Lands, Traditional Custodians, Practices, and Creator Ancestors of these Great Nations, as well as those First Nations peoples throughout Australia, Vietnam, and Indonesia, where this research continues, and upon whose stolen lands and waterways were never ceded.

Keywords: acoustic archaeology, decolonisation, museum collections, rematriation, repatriation, Dong Son, experimental music, digital recording

Procedia PDF Downloads 139
917 Money Laundering and Terror Financing in the Islamic Banking Sector in Bangladesh

Authors: Md. Abdul Kader

Abstract:

Several reports released by Global Financial Integrity (GFI) in recent times have identified Bangladesh as being among the worst affected countries to the scourge of money laundering (ML) and terrorist financing (TF). The money laundering (ML) and terrorist financing (TF) risks associated with conventional finance are generally well identified and understood by the relevant national authorities. There is, however, no common understanding of ML/TF risks associated with Islamic Banking. This paper attempts to examine the issues of money laundering (ML) and terrorist financing (TF) in Islamic Banks of Bangladesh. This study also investigates the risk factors associated with Islamic Banking system of Bangladesh that are favorable for ML and TF and which prevent the government to control such issues in the Islamic Banks of Bangladesh. Qualitative research methods were employed by studying various reports from journals, newspapers, bank reports and periodicals. In addition, five ex-bankers who were in the policy making bodies of three Islamic Banks were also interviewed. Findings suggest that government policies regarding Islamic Banking system in Bangladesh are not well defined and clear. Shariah law, that is the guiding principle of Islamic Banking, is not well recognized by the government policy makers, and thus they left the responsibility to the governing bodies of the banks. Other challenges that were found in the study are: the complexity of some Islamic banking products, the different forms of relationship between the banks and their clients, the inadequate ability and skill in the supervision of Islamic finance, particularly in jurisdictions, to evaluate their activities. All these risk factors paved the ground for ML and TF in the Islamic Banks of Bangladesh. However, due to unconventional nature of Banking and lack of investigative reporting on Islamic Banking, this study could not cover the whole picture of the ML/TF of Islamic Banks of Bangladesh. However, both qualitative documents and interviewees confirmed that Islamic Banking in Bangladesh could be branded as risky when it comes to money laundering and terror financing. This study recommends that the central bank authorities who supervise Islamic finance and the government policy makers should obtain a greater understanding of the specific ML/TF risks that may arise in Islamic Banks and develop a proper response. The study findings are expected to considerably impact Islamic banking management and policymakers to develop strong and appropriate policy to enhance transparency, accountability, and efficiency in banking sector. The regulatory bodies can consider the findings to disseminate anti money laundering and terror financing related rules and regulations.

Keywords: money laundering, terror financing, islamic banking, bangladesh

Procedia PDF Downloads 79
916 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 76
915 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 333
914 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 143
913 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 137