Search results for: sensor faults
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1714

Search results for: sensor faults

544 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 110
543 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 149
542 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing

Authors: S. Vignesh, K. S. Rangasamy

Abstract:

The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.

Keywords: CCD, optics, image processing, D3CIP

Procedia PDF Downloads 357
541 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage

Authors: J.Das, Gyan Wrat

Abstract:

Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.

Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit

Procedia PDF Downloads 400
540 Portable Environmental Parameter Monitor Based on STM32

Authors: Liang Zhao, Chongquan Zhong

Abstract:

Introduction: According to statistics, people spend 80% to 90% of time indoor, so indoor air quality, either at home or in the office, greatly impacts the quality of life, health and work efficiency. Therefore, indoor air quality is very important to human activities. With the acceleration of urbanization, people are spending more time in indoor activity. The time in indoor environment, the living space, and the frequency interior decoration are all increasingly increased. However, housing decoration materials contain formaldehyde and other harmful substances, causing environmental and air quality problems, which have brought serious damage to countless families and attracted growing attention. According to World Health Organization statistics, the indoor environments in more than 30% of buildings in China are polluted by poisonous and harmful gases. Indoor pollution has caused various health problems, and these widespread public health problems can lead to respiratory diseases. Long-term inhalation of low-concentration formaldehyde would cause persistent headache, insomnia, weakness, palpitation, weight loss and vomiting, which are serious impacts on human health and safety. On the other hand, as for offices, some surveys show that good indoor air quality helps to enthuse the staff and improve the work efficiency by 2%-16%. Therefore, people need to further understand the living and working environments. There is a need for easy-to-use indoor environment monitoring instruments, with which users only have to power up and monitor the environmental parameters. The corresponding real-time data can be displayed on the screen for analysis. Environment monitoring should have the sensitive signal alarm function and send alarm when harmful gases such as formaldehyde, CO, SO2, are excessive to human body. System design: According to the monitoring requirements of various gases, temperature and humidity, we designed a portable, light, real-time and accurate monitor for various environmental parameters, including temperature, humidity, formaldehyde, methane, and CO. This monitor will generate an alarm signal when a target is beyond the standard. It can conveniently measure a variety of harmful gases and provide the alarm function. It also has the advantages of small volume, convenience to carry and use. It has a real-time display function, outputting the parameters on the LCD screen, and a real-time alarm function. Conclusions: This study is focused on the research and development of a portable parameter monitoring instrument for indoor environment. On the platform of an STM32 development board, the monitored data are collected through an external sensor. The STM32 platform is for data acquisition and processing procedures, and successfully monitors the real-time temperature, humidity, formaldehyde, CO, methane and other environmental parameters. Real-time data are displayed on the LCD screen. The system is stable and can be used in different indoor places such as family, hospital, and office. Meanwhile, the system adopts the idea of modular design and is superior in transplanting. The scheme is slightly modified and can be used similarly as the function of a monitoring system. This monitor has very high research and application values.

Keywords: indoor air quality, gas concentration detection, embedded system, sensor

Procedia PDF Downloads 255
539 Application of Drones in Agriculture

Authors: Reza Taherlouei Safa, Mohammad Aboonajmi

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: drone, precision agriculture, farmer income, UAV

Procedia PDF Downloads 81
538 Geophysical Mapping of Anomalies Associated with Sediments of Gwandu Formation Around Argungu and Its Environs NW, Nigeria

Authors: Adamu Abubakar, Abdulganiyu Yunusa, Likkason Othniel Kamfani, Abdulrahman Idris Augie

Abstract:

This research study is being carried out in accordance with the Gwandu formation's potential exploratory activities in the inland basin of northwest Nigeria.The present research aims to identify and characterize subsurface anomalies within Gwandu formation using electrical resistivity tomography (ERT) and magnetic surveys, providing valuable insights for mineral exploration. The study utilizes various data enhancement techniques like derivatives, upward continuation, and spectral analysis alongside 2D modeling of electrical imaging profiles to analyze subsurface structures and anomalies. Data was collected through ERT and magnetic surveys, with subsequent processing including derivatives, spectral analysis, and 2D modeling. The results indicate significant subsurface structures such as faults, folds, and sedimentary layers. The study area's geoelectric and magnetic sections illustrate the depth and distribution of sedimentary formations, enhancing understanding of the geological framework. Thus, showed that the entire formations of Eocene sediment of Gwandu are overprinted by the study area's Tertiary strata. The NE to SW and E to W cross-profile for the pseudo geoelectric sections beneath the study area were generated using a two-dimensional (2D) electrical resistivity imaging. 2D magnetic modelling, upward continuation, and derivative analysis are used to delineate the signatures of subsurface magnetic anomalies. The results also revealed The sediment thickness by surface depth ranges from ∼4.06 km and ∼23.31 km. The Moho interface, the lower and upper mantle crusts boundary, and magnetic crust are all located at depths of around ∼10.23 km. The vertical distance between the local models of the foundation rocks to the north and south of the Sokoto Group was approximately ∼6 to ∼8 km and ∼4.5 km, respectively.

Keywords: high-resolution aeromagnetic data, electrical resistivity imaging, subsurface anomalies, 2d dorward modeling

Procedia PDF Downloads 14
537 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy

Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini

Abstract:

The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.

Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering

Procedia PDF Downloads 223
536 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level

Authors: M. K. Deore

Abstract:

The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.

Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time

Procedia PDF Downloads 420
535 Insights into Kinematics and Basin Development through Palinspastic Reconstructions in Pull-Apart Basin Sunda Strait: Implication for the Opportunity of Hydrocarbon Exploration in Fore-Arc Basin, Western Indonesia

Authors: Alfathony Krisnabudhi, Syahli Reza Ananda, M. Edo Marshal, M. Maaruf Mukti

Abstract:

This study investigates the kinematics and basin development of pull-apart basin Sunda Strait based on palinspastic reconstructions of new acquired seismic reflection data to unravel hydrocarbon exploration opportunity in frontier area, fore-arc basin western Indonesia. We use more than 780 km seismic reflection data that cover whole basin. Structural patterns in Sunda Strait are dominated by northwest-southeast trending planar and listric-normal faults which appear to be graben and half-graben system. The main depocentre of this basin is East Semangko graben and West Semangko graben that are formed by overstepping of Sumatra Fault Zone and Ujungkulon Fault Zone. In father east, another depocentre is recognized as the Krakatau graben. The kinematic evolution started in Middle Miocene, characterized by the initiation of basement faulting with 0% to 7.00% extension. Deposition stratigraphic unit 1 and unit 2 started at 7.00% to 10.00% extension in Late Miocene and recognized as pre-transtensional deposit. The Plio-Pleistocene unit 3 and 4 were deposited as syn-transtensional deposit with 10.00% to 17.00% extension contemporaneously with the initiation of uplift NW-SE trending ridges due to the evolution of cross-basin fault in central basin and the development of en-echelon basin margin in a transtensional system. The control of sedimentation rate and basin subsidence cause the Neogene sediment to be very thick. We suggest that both controls allow thermal and pressure to generate hydrocarbon habitats in the pre-transtensional deposits. It is reinforced by stable kinematic evolution and interpretation of the deposition environment of pre-transtensional deposits that are deposited in the marine environment.

Keywords: kinematics, palinspastic, Sunda Strait, hydrocarbon exploration, fore-arc basin

Procedia PDF Downloads 182
534 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 95
533 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 151
532 Vibration of Gamma Graphyne with an Attached Mass

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

Atomic finite element simulation is applied to investigate the vibration frequency of a single-layer gamma graphyne with an attached mass for the CCCC, SSSS, CFCF, SFSF boundary conditions using the commercial code ANSYS. The fundamental frequencies of the graphyne sheet are compared with the results of the previous study. The results of the comparison are very good in all considered cases. The attached mass causes a shift in the resonant frequency of the graphyne. The frequencies of the single-layer gamma graphyne with an attached mass for different boundary conditions are obtained, and the order based on the boundary condition is CCCC >SSSS > CFCF> SFSF. The highest frequency shift is obtained when the attached mass is located at the center of the graphyne sheet. This is useful for the design of a highly sensitive graphyne-based mass sensor.

Keywords: graphyne, finite element analysis, vibration analysis, frequency shift

Procedia PDF Downloads 212
531 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields

Authors: Babak Rezaei, Arash Zargar Shoushtari

Abstract:

Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.

Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields

Procedia PDF Downloads 358
530 Dual Mode “Turn On-Off-On” Photoluminescence Detection of EDTA and Lead Using Moringa Oleifera Gum-Derived Carbon Dots

Authors: Anisha Mandal, Swambabu Varanasi

Abstract:

Lead is one of the most prevalent toxic heavy metal ions, and its pollution poses a significant threat to the environment and human health. On the other hand, Ethylenediaminetetraacetic acid is a widely used metal chelating agent that, due to its poor biodegradability, is an incessant pollutant to the environment. For the first time, a green, simple, and cost-effective approach is used to hydrothermally synthesise photoluminescent carbon dots using Moringa Oleifera Gum in a single step. Then, using Moringa Oleifera Gum-derived carbon dots, a photoluminescent "ON-OFF-ON" mechanism for dual mode detection of trace Pb2+ and EDTA was proposed. MOG-CDs detect Pb2+ selectively and sensitively using a photoluminescence quenching mechanism, with a detection limit (LOD) of 0.000472 ppm. (1.24 nM). The quenched photoluminescence can be restored by adding EDTA to the MOG-CD+Pb2+ system; this strategy is used to quantify EDTA at a level of detection of 0.0026 ppm. (8.9 nM). The quantification of Pb2+ and EDTA in actual samples encapsulated the applicability and dependability of the proposed photoluminescent probe.

Keywords: carbon dots, photoluminescence, sensor, moringa oleifera gum

Procedia PDF Downloads 114
529 Biometric Identification with Latitude and Longitude Fingerprint Verification for Attendance

Authors: Muhammad Fezan Afzal, Imran Khan, Salma Imtiaz

Abstract:

The need for human verification and identification requires from centuries for authentication. Since it is being used in big institutes like financial, government and crime departments, a continued struggle is important to make this system more efficient to prevent security breaches. Therefore, multiple devices are used to authenticate the biometric for each individual. A large number of devices are required to cover a large number of users. As the number of devices increases, cost will automatically increase. Furthermore, it is time-consuming for biometrics due to the devices being insufficient and are not available at every door. In this paper, we propose the framework and algorithm where the mobile of each individual can also perform the biometric authentication of attendance and security. Every mobile has a biometric authentication system that is used in different mobile applications for security purposes. Therefore, each individual can use the biometric system mobile without moving from one place to another. Moreover, by using the biometrics mobile, the cost of biometric systems can be removed that are mostly deployed in different organizations for the attendance of students, employees and for other security purposes.

Keywords: fingerprint, fingerprint authentication, mobile verification, mobile biometric verification, mobile fingerprint sensor

Procedia PDF Downloads 69
528 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms

Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen

Abstract:

This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.

Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control

Procedia PDF Downloads 229
527 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 240
526 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 139
525 Study on Water Level Management Criteria of Reservoir Failure Alert System

Authors: B. Lee, B. H. Choi

Abstract:

The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS)

Keywords: alert system, management criteria, reservoir failure, sensor

Procedia PDF Downloads 200
524 Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization

Authors: Kwame Sarkodie, William Cheung, Andrew R. Fergursson

Abstract:

The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization.

Keywords: attenuation, infrared, multiphase, spectroscopy

Procedia PDF Downloads 368
523 Instant Fire Risk Assessment Using Artifical Neural Networks

Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan

Abstract:

Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.

Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index

Procedia PDF Downloads 137
522 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 113
521 Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics

Authors: Behnam Madadnia

Abstract:

For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision.

Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioning

Procedia PDF Downloads 97
520 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes

Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai

Abstract:

This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.

Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence

Procedia PDF Downloads 505
519 Dimensioning of a Solar Dryer with Application of an Experiment Design Method for Drying Food Products

Authors: B. Touati, A. Saad, B. Lips, A. Abdenbi, M. Mokhtari.

Abstract:

The purpose of this study is an application of experiment design method for dimensioning of a solar drying system. NIMROD software was used to build up the matrix of experiments and to analyze the results. The software has the advantages of being easy to use and consists of a forced way, with some choices about the number and range of variation of the parameters, and the desired polynomial shape. The first design of experiments performed concern the drying with constant input characteristics of the hot air in the dryer and a second design of experiments in which the drying chamber is coupled with a solar collector. The first design of experiments allows us to study the influence of various parameters and get the studied answers in a polynomial form. The correspondence between the polynomial thus determined, and the model results were good. The results of the polynomials of the second design of experiments and those of the model are worse than the results in the case of drying with constant input conditions. This is due to the strong link between all the input parameters, especially, the surface of the sensor and the drying chamber, and the mass of the product.

Keywords: solar drying, experiment design method, NIMROD, mint leaves

Procedia PDF Downloads 503
518 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks

Procedia PDF Downloads 350
517 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
516 Design and Implementation of Pseudorandom Number Generator Using Android Sensors

Authors: Mochamad Beta Auditama, Yusuf Kurniawan

Abstract:

A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.

Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators

Procedia PDF Downloads 374
515 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor

Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh

Abstract:

Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.

Keywords: cantilever beam, electrical current measurement, forced excitation, piezoelectric

Procedia PDF Downloads 232