Search results for: regional knowledge networks
10274 An Overview of Domain Models of Urban Quantitative Analysis
Authors: Mohan Li
Abstract:
Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design
Procedia PDF Downloads 17710273 Conceptual Model for Knowledge Sharing Model in Creating Idea for Mobile Application
Authors: Hanafizan Hussain
Abstract:
This study shows that several projects will be conducted at the workshop in which using the conceptual model for knowledge sharing approach to create an idea for mobile application. The sharing idea has been done through the collaborative activity in which a group of different field sought to define the mobile application which will lead to new media approach of using social media platform. The collaborative activity will be provided and implemented in the form of one day workshop to determine the approach towards the theme given. The activity later will be continued for four weeks for the participant to prepare for the pitch day workshop. This paper shows the pitch of idea including the interface and prototype for the said products. The collaboration between the members with different field of study shows that social media influenced the knowledge sharing model and its creation or innovations. One of the projects supported a collaborative activity in which a group of young designers sought to define the knowledge sharing model of their ability in creating idea for mobile applications.Keywords: mobile application, collaborative activity, conceptual knowledge sharing model, social media platform
Procedia PDF Downloads 14310272 How to Modernise the European Competition Network (ECN)
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such a structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonisation of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures.Keywords: antitrust, competition, networks, path dependence
Procedia PDF Downloads 31710271 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka
Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana
Abstract:
Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.Keywords: knowledge, mammography, quality assurance, quality control
Procedia PDF Downloads 33210270 Breastfeeding Knowledge, Attitudes and Practice: A Cross-Sectional Study among a Sample of Tunisian Mothers
Authors: Arfaoui Emna, Nouira Mariem
Abstract:
Background and aims: Breastfeeding is the reference feeding for a child, especially during the first months of life. It is not widespread in many countries due to many factors. There has been a decline in exclusive breastfeeding (EB) practice, particularly in the middle- and low-income countries, i.e., Tunisia. The aim of our study was to describe the knowledge, attitudes, and practice of a sample of Tunisian mothers toward breastfeeding. Methods: It was a descriptive cross-sectional study conducted during the year 2022 over a period of two months in three health structures in the north of Tunisia among mothers of infants aged 2 to 18 months. Levels of mothers’ knowledge (low/moderate/high) were determined using a score ranging from 0 to 11 points. EB was defined as the proportion of infants who were exclusively breastfed during the first six months of life. Results: A total of 180 women with a mean age of 33±4.9 years were included. The average knowledge score was equal to 6.4 ±1.5 points, with extremes ranging from 3 to 11 points. Most of the respondents had a moderate knowledge level (44.4%). More than half of surveyed mothers (66.1%) thought that breastfeeding deforms breasts, and 16.7% thought that breastfeeding is specific to women who do not work. Breastfeeding experience during the first week of life was considered difficult in 70% of cases. The prevalence of EB up to 6 months of age was equal to 16.4% [10.8-23.2]. The main reported obstacles during breastfeeding practice were having an insufficient quantity of breast milk (18.3%) and child difficulties with sucking (12.8%), and having pain in the breast while breastfeeding (12.80%). Conclusion: Our results highlighted the insufficient level of knowledge and a low prevalence of EB in our study population. Improving mothers’ knowledge and promoting EB practice is needed. Implementing health education strategies involving healthcare workers, who represent a main actor in education and breastfeeding promotion, is very important to reach a satisfactory frequency for EB.Keywords: breastfeeding, practices, knowledge, Tunisia
Procedia PDF Downloads 8010269 Modeling and Tracking of Deformable Structures in Medical Images
Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan
Abstract:
This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images
Procedia PDF Downloads 34310268 Matlab Method for Exclusive-or Nodes in Fuzzy GERT Networks
Authors: Roland Lachmayer, Mahtab Afsari
Abstract:
Research is the cornerstone for advancement of human communities. So that it is one of the indexes for evaluating advancement of countries. Research projects are usually cost and time-consuming and do not end in result in short term. Project scheduling is one of the integral parts of project management. The present article offers a new method by using C# and Matlab software to solve Fuzzy GERT networks for Exclusive-OR kind of nodes to schedule the network. In this article we concentrate on flowcharts that we used in Matlab to show how we apply Matlab to schedule Exclusive-OR nodes.Keywords: research projects, fuzzy GERT, fuzzy CPM, CPM, α-cuts, scheduling
Procedia PDF Downloads 39910267 Hybrid SVM/DBN Model for Arabic Isolated Words Recognition
Authors: Elyes Zarrouk, Yassine Benayed, Faiez Gargouri
Abstract:
This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN.Keywords: dynamic Bayesian networks, hybrid models, supports vectors machine, Arabic isolated words
Procedia PDF Downloads 56110266 A Comparative and Critical Analysis of Some Routing Protocols in Wireless Sensor Networks
Authors: Ishtiaq Wahid, Masood Ahmad, Nighat Ayub, Sajad Ali
Abstract:
Lifetime of a wireless sensor network (WSN) is directly proportional to the energy consumption of its constituent nodes. Routing in wireless sensor network is very challenging due its inherit characteristics. In hierarchal routing the sensor filed is divided into clusters. The cluster-heads are selected from each cluster, which forms a hierarchy of nodes. The cluster-heads are used to transmit the data to the base station while other nodes perform the sensing task. In this way the lifetime of the network is increased. In this paper a comparative study of hierarchal routing protocols are conducted. The simulation is done in NS-2 for validation.Keywords: WSN, cluster, routing, sensor networks
Procedia PDF Downloads 48010265 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage
Authors: Ashraf Ibrahim Awad
Abstract:
It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.Keywords: knowledge management, e-learning, learning integration, universities, UAE
Procedia PDF Downloads 51010264 Sex Education Training Program Effect on Junior Secondary School Students Knowledge and Practice of Sexual Risk Behavior
Authors: Diyaolu Babajide Olufemi, Oyerinde Oyewole Olusesan
Abstract:
This study examined the effect of sex education training programs on the knowledge and practice of sexual risk behavior among secondary school adolescents in Ibadan North Local Government area of Oyo State. A total of 105 students were sampled from two schools in the Local Government area. Seventy students (70) constituted the experimental group while thirty-five (35) constituted the control group. Pretest-Posttest control group quasi-experimental design was adopted. A self-developed questionnaire was used to test participants’ knowledge and practice of sexual risk behavior before and after the training (α=.62, .82 and .74). Analysis indicated a significant effect of sex education training on participants’ knowledge and practice of sexual risk behavior, a significant gender difference in knowledge of sexual risk behavior but no significant age and gender difference in the practice of sexual risk behavior. It was thus concluded that sex education should be taught in schools and emphasized at homes with no age or gender restrictions.Keywords: early adolescent, health risk, sexual risk behavior, sex education
Procedia PDF Downloads 14310263 Locus of Control, Metacognitive Knowledge, Metacognitive Regulation, and Student Performance in an Introductory Economics Course
Authors: Ahmad A. Kader
Abstract:
In the principles of Microeconomics course taught during the Fall Semester 2019, 158out of 179 students participated in the completion of two questionnaires and a survey describing their demographic and academic profiles. The two questionnaires include the 29 items of the Rotter Locus of Control Scale and the 52 items of the Schraw andDennisonMetacognitive Awareness Scale. The 52 items consist of 17 items describing knowledge of cognition and 37 items describing the regulation of cognition. The paper is intended to show the combined influence of locus of control, metacognitive knowledge, and metacognitive regulation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, student classification, whether the course was required or elective, employments, whether a high school economic course was taken, and attendance. Regression results show that of the economic education variables, GPA, classification, whether the course was required or elective, and attendance are the only significant variables in their influence on student grade. Of the educational psychology variables, the regression results show that the locus of control variable has a negative and significant effect, while the metacognitive knowledge variable has a positive and significant effect on student grade. Also, the adjusted R square value increased markedly with the addition of the locus of control, metacognitive knowledge, and metacognitive regulation variables to the regression equation. The t test results also show that students who are internally oriented and are high on the metacognitive knowledge scale significantly outperform students who are externally oriented and are low on the metacognitive knowledge scale. The implication of these results for educators is discussed in the paper.Keywords: locus of control, metacognitive knowledge, metacognitive regulation, student performance, economic education
Procedia PDF Downloads 12510262 Disparities in the Levels of Economic Development in Uttar Pradesh: A Regional Analysis
Authors: Naushaba Naseem Ahmed
Abstract:
Economic development does not merely depend upon the level of development but also on its distributive aspect. As it is a serious issue, the fruit of development is not equally distributed among the different section of peoples and different part of the country this cause the regional disparities in the levels of social economic development. Different part of the country has different resource endowments in term of natural, human and capital. If there is the uniform condition to grow, these areas that have better resources, are favourably placed grow comparatively faster as other areas. Thus with the very stage of development, gap between resourceful and less resourceful area goes on widening. This paper is an attempt to highlight the levels of disparities in term of economic development with the help of selected variables. Principal component analysis, correlation, and coefficient of variation are the techniques which were used in paper and employed published data for analysis. The result shows that Western region of Uttar Pradesh is more developed followed by Central Region. There will be urgent need in investment and developmental policies for the backward region like Bundelkhand region of Uttar Pradesh.Keywords: coefficient of variation, correlation, economic development, principal component analysis
Procedia PDF Downloads 26110261 Co-Authorship Networks of Scientific Collaboration
Authors: Juha Kettunen
Abstract:
This study analyzes collaborative and networked academic authorship in higher education. The literature review shows evidence that single authorship has made a gradual paradigm shift to joint authorship. The empirical evidence from the Turku University of Applied Sciences indicates that collaborative authorship has notably increased in the last few years. Co-authorship has extended outside the institution to other domestic and international academic organizations. Co-authorship not only increase the merits of academic scholars but builds and maintains networks of research and development. The results of this study help the authors, editors and partners of research and development projects to have a more concrete understanding of how co-authorship has developed and spread beyond higher education institutions.Keywords: co-authorship, social networking, higher education, research and development
Procedia PDF Downloads 24310260 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks
Procedia PDF Downloads 24410259 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 46210258 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard Jorswieck
Abstract:
The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.Keywords: vehicle-to-everything (V2X), resource allocation, BS assignment, new radio (NR), new radio unlicensed (NR-U), coexistence NR-U and WiFi, deep deterministic policy gradient (DDPG), deep Q-network (DQN), joint BS assignment and resource allocation (JBSRA), duty cycle mechanism
Procedia PDF Downloads 10410257 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 32810256 A Survey of WhatsApp as a Tool for Instructor-Learner Dialogue, Learner-Content Dialogue, and Learner-Learner Dialogue
Authors: Ebrahim Panah, Muhammad Yasir Babar
Abstract:
Thanks to the development of online technology and social networks, people are able to communicate as well as learn. WhatsApp is a popular social network which is growingly gaining popularity. This app can be used for communication as well as education. It can be used for instructor-learner, learner-learner, and learner-content interactions; however, very little knowledge is available on these potentials of WhatsApp. The current study was undertaken to investigate university students’ perceptions of WhatsApp used as a tool for instructor-learner dialogue, learner-content dialogue, and learner-learner dialogue. The study adopted a survey approach and distributed the questionnaire developed by Google Forms to 54 (11 males and 43 females) university students. The obtained data were analyzed using SPSS version 20. The result of data analysis indicates that students have positive attitudes towards WhatsApp as a tool for Instructor-Learner Dialogue: it easy to reach the lecturer (4.07), the instructor gives me valuable feedback on my assignment (4.02), the instructor is supportive during course discussion and offers continuous support with the class (4.00). Learner-Content Dialogue: WhatsApp allows me to academically engage with lecturers anytime, anywhere (4.00), it helps to send graphics such as pictures or charts directly to the students (3.98), it also provides out of class, extra learning materials and homework (3.96), and Learner-Learner Dialogue: WhatsApp is a good tool for sharing knowledge with others (4.09), WhatsApp allows me to academically engage with peers anytime, anywhere (4.07), and we can interact with others through the use of group discussion (4.02). It was also found that there are significant positive correlations between students’ perceptions of Instructor-Learner Dialogue (ILD), Learner-Content Dialogue (LCD), Learner-Learner Dialogue (LLD) and WhatsApp Application in classroom. The findings of the study have implications for lectures, policy makers and curriculum developers.Keywords: instructor-learner dialogue, learners-contents dialogue, learner-learner dialogue, whatsapp application
Procedia PDF Downloads 16110255 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.Keywords: classification algorithms, data mining, knowledge discovery, tourism
Procedia PDF Downloads 29510254 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks
Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem
Abstract:
Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule
Procedia PDF Downloads 10110253 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources
Authors: Guanglin Song
Abstract:
(Objective) Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. (Methods) A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city.(Conclusion) The findings reveal that:1.there exists overall maldistribution and over-concentration of healthcare resources in Study Area, characterized by structural imbalance; 2.the low rate of primary care utilization in Study Area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem; 3.gradual optimization of the healthcare facility layout in Study Area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance.(Prospects) This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. Provide some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.Keywords: flow of public services, urban networks, healthcare facilities, spatial planning, urban networks
Procedia PDF Downloads 7110252 An Evaluation of Impact of Video Billboard on the Marketing of GSM Services in Lagos Metropolis
Authors: Shola Haruna Adeosun, F. Adebiyi Ajoke, Odedeji Adeoye
Abstract:
Video billboard advertising by networks and brand switching was conceived out of inquisition at the huge billboard advertising expenditures made by the three major GSM network operators in Nigeria. The study was anchored on Lagos State Metropolis with a current census population over 1,000,000. From this population, a purposive sample of 400 was adopted, and the questionnaire designed for the survey was carefully allocated to members of this ample in the five geographical zones of the city so that each rung of the society was well represented. The data obtained were analyzed using tables and simple percentages. The results obtained showed that subscribers of these networks were hardly influenced by the video billboard advertisements. They overwhelmingly showed that rather than the slogans of the GSM networks carried on the video billboards, it was the incentives to subscribers as well as the promotional strategies of these organizations that moved them to switch from one network to another. These switching lasted only as long as the incentives and promotions were in effect. The results of the study also seemed to rekindle the age-old debate on media effects, by the unyielding schools of the theory of ‘all-powerful media’, ‘the limited effects media’, ‘the controlled effects media’ and ‘the negotiated media influence’.Keywords: evaluation, impact, video billboard, marketing, services
Procedia PDF Downloads 25610251 The Effects of Geographical and Functional Diversity of Collaborators on Quality of Knowledge Generated
Authors: Ajay Das, Sandip Basu
Abstract:
Introduction: There is increasing recognition that diverse streams of knowledge can often be recombined in novel ways to generate new knowledge. However, knowledge recombination theory has not been applied to examine the effects of collaborator diversity on the quality of knowledge such collaborators produce. This is surprising because one would expect that a collaborative team with certain aspects of diversity should be able to recombine process elements related to knowledge development, which are relatively tacit, but also complementary because of the collaborator’s varying backgrounds. Theory and Hypotheses: We propose to examine two aspects of diversity in the environments of collaborative teams to try and capture such potential recombinations of relatively tacit, process knowledge. The first aspect of diversity in team members’ environments is geographical. Collaborators with more geographical distance between them (perhaps working in different countries) often have more autonomy in the processes they adopt for knowledge development. In the absence of overt monitoring, such collaborators are likely to adopt differing approaches to knowledge development. The sharing of such varying approaches among collaborators is likely to result in greater quality of the common collaborative pursuit. The second aspect is diversity in the work backgrounds of team members. Such diversity can also increase the potential for knowledge recombination. For example, if one or more members are from a manufacturing center (versus all of them being from a purely R&D center), such members will provide unique perspectives on the implementation of innovative ideas. Again, knowledge that has been evaluated from these diverse perspectives is likely to be of a higher quality. In addition to the above aspects of environmental diversity among team members, we also plan to examine the extent to which individual collaborators are in different environments from the primary innovation center of their employing firms. Proposed Methods: We will test our model on a sample of firms in the semiconductor industry. Our level of analysis will be individual patents generated by these firms and the teams involved in the generation of these. Information on manufacturing activities of our sample firms will be obtained from SEMI, a proprietary database of the semiconductor industry, as well as company 10-K reports. Conclusion: We believe that our results will represent a preliminary attempt to understand how various forms of diversity in collaborative teams impact the knowledge development process. Our dependent variable of knowledge quality is important to study since higher values of this variable can not only drive firm performance but the broader development of regions and societies through spillover impacts on future innovation. The results of this study will, therefore, inform future research and practice in innovation, geographical location, and vertical integration.Keywords: innovation, manufacturing strategy, knowledge, diversity
Procedia PDF Downloads 35310250 Escherichia Coli Producing Extended-spectrum Beta-lactamase (ESBL) at the Tambacounda Regional Hospital Center (CHRT), Senegal
Authors: Assane Dieng, Abass Sarr, Gora Lo, Awa Ba, Halimatou Diop Ndiaye, Makhtar Camara
Abstract:
Introduction: Escherchia coli is one of the main beta-lactamase-producing bacteria. In Senegal, we are witnessing a weakness in the technical platform and a deficit in qualified personnel in laboratories, especially in rural areas. This is why there is little updated data on antibiotic bacterial resistance in rural areas. The objective is to study infections with Escherichia coli producing extended-spectrum beta-lactamase (ESBL) at the Tambacounda Regional Hospital Center (CHRT), Senegal. Methodology: Samples were taken from patients consulted at the Tambacounda Regional Hospital Center (CHRT) from January to October 2024. The search for Escherichia coli was carried out by determining morphological, biochemical and cultural characteristics. The antibiogram was performed using the Mueller-Hinton (MH) agar diffusion method following the recommendations of the Antibiogram Committee of the French Society of Microbiology (CA SFM). ESBL production was detected using the double synergy method Results: A total of 287 germs were isolated during the study period, including 96 strains of Escherichia coli, 47 of which produced a broad-spectrum beta-lactamase. ESBL-producing E. coli strains were more common in men (61.2%). The most affected age groups were [60-79 years] and [20-39 years] with respective rates of 36.7% and 27%. ESBL-producing E. coli strains were isolated mainly in non-hospitalized patients (79%). Beta-lactamase-producing E. coli strains were mainly resistant to tetracycline (95.7%), norfloxacin (91.5%) and ciprofloxacin (87.2%).Conclusion: ESBL-producing E. coli strains are also present in rural areas Thus, to have more comprehensive data, qualified personnel as well as a high-level technical platform should be available in these laboratories.Keywords: E. coli, beta-lactamase, rural area, non hospitalized
Procedia PDF Downloads 810249 Prospective Mathematics Teachers' Content Knowledge on the Definition of Limit and Derivative
Authors: Reyhan Tekin Sitrava
Abstract:
Teachers should have robust and comprehensive content knowledge for effective mathematics teaching. It was explained that content knowledge includes knowing the facts, truths, and concepts; explaining the reasons behind these facts, truths and concepts, and making relationship between the concepts and other disciplines. By virtue of its importance, it will be significant to explore teachers and prospective teachers’ content knowledge related to variety of topics in mathematics. From this point of view, the purpose of this study was to investigate prospective mathematics teachers’ content knowledge. Particularly, it was aimed to reveal the prospective teachers’ knowledge regarding the definition of limit and derivate. To achieve the purpose and to get in-depth understanding, a qualitative case study method was used. The data was collected from 34 prospective mathematics teachers through a questionnaire containing 2 questions. The first question required the prospective teachers to define the limit and the second one required to define the derivative. The data was analyzed using content analysis method. Based on the analysis of the data, although half of the prospective teachers (50%) could write the definition of the limit, nine prospective teachers (26.5%) could not define limit. However, eight prospective teachers’ definition was regarded as partially correct. On the other hand, twenty-seven prospective teachers (79.5%) could define derivative, but seven of them (20.5%) defined it partially. According to the findings, most of the prospective teachers have robust content knowledge on limit and derivative. This result is important because definitions have a virtual role in learning and teaching of mathematics. More specifically, definition is starting point to understand the meaning of a concept. From this point of view, prospective teachers should know the definitions of the concepts to be able to teach them correctly to the students. In addition, they should have knowledge about the relationship between limit and derivative so that they can explain these concepts conceptually. Otherwise, students may memorize the rules of calculating the derivative and the limit. In conclusion, the present study showed that most of the prospective mathematics teachers had enough knowledge about the definition of derivative and limit. However, the rest of them should learn their definition conceptually. The examples of correct, partially correct, and incorrect definition of both concepts will be presented and discussed based on participants’ statements. This study has some implications for instructors. Instructors should be careful about whether students learn the definition of these concepts or not. In order to this, the instructors may give prospective teachers opportunities to discuss the definition of these concepts and the relationship between the concepts.Keywords: content knowledge, derivative, limit, prospective mathematics teachers
Procedia PDF Downloads 22110248 A Validation Technique for Integrated Ontologies
Authors: Neli P. Zlatareva
Abstract:
Ontology validation is an important part of web applications’ development, where knowledge integration and ontological reasoning play a fundamental role. It aims to ensure the consistency and correctness of ontological knowledge and to guarantee that ontological reasoning is carried out in a meaningful way. Existing approaches to ontology validation address more or less specific validation issues, but the overall process of validating web ontologies has not been formally established yet. As the size and the number of web ontologies continue to grow, the necessity to validate and ensure their consistency and interoperability is becoming increasingly important. This paper presents a validation technique intended to test the consistency of independent ontologies utilized by a common application.Keywords: knowledge engineering, ontological reasoning, ontology validation, semantic web
Procedia PDF Downloads 32310247 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 28110246 Preventive Effect of Locoregional Analgesia Techniques on Chronic Post-Surgical Neuropathic Pain: A Prospective Randomized Study
Authors: Beloulou Mohamed Lamine, Bouhouf Attef, Meliani Walid, Sellami Dalila, Lamara Abdelhak
Abstract:
Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with post-surgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariate analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature or component, particularly in surgeries that are more prone to chronicization.Keywords: chronic postsurgical pain, postsurgical chronic neuropathic pain, regional anesthesia and analgesia techniques (RAAT), neuropathic pain score dn2, preventive impact
Procedia PDF Downloads 3010245 Socio-Cultural Factors to Support Knowledge Management and Organizational Innovation: A Study of Small and Medium-Sized Enterprises in Latvia
Authors: Madara Apsalone
Abstract:
Knowledge management and innovation is key to competitive advantage and sustainable business development in advanced economies. Small and medium-sized enterprises (SMEs) have lower capacity and more constrained resources for long-term and high-uncertainty research and development investments. At the same time, SMEs can implement organizational innovation to improve their performance and further foster other types of innovation. The purpose of this study is to analyze, how socio-cultural factors such as shared values, organizational behaviors, work organization and decision making processes can influence knowledge management and help to develop organizational innovation via an empirical study. Surveying 600 SMEs in Latvia, the author explores the contribution of different socio-cultural factors to organizational innovation and the role of knowledge management and organizational learning in this process. A conceptual model, explaining the impact of organizational team, development, result-orientation and structure is created. The study also proposes insights that contribute to theoretical and practical discussions on fostering innovation of small businesses in small economies.Keywords: knowledge management, organizational innovation, small and medium-sized enterprises, socio-cultural factors
Procedia PDF Downloads 391