Search results for: ontology modelling
809 Modelling Ibuprofen with Human Albumin
Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva
Abstract:
The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.Keywords: ibuprofen, human serum albumin, density functional theory, binding energies
Procedia PDF Downloads 347808 Implementation of Building Information Modeling in Turkish Government Sector Projects
Authors: Mohammad Lemar Zalmai, Mustafa Nabi Kocakaya, Cemil Akcay, Ekrem Manisali
Abstract:
In recent years, the Building Information Modeling (BIM) approach has been developed expeditiously. As people see the benefits of this approach, it has begun to be used widely in construction projects and some countries made it mandatory to get more benefits from it. To promote the implementation of BIM in construction projects, it will be helpful to get some relevant information from surveys and interviews. The purpose of this study is to research the current adoption and implementation of BIM in public projects in Turkey. This study specified the challenges of BIM implementation in Turkey and proposed some solutions to overcome them. In this context, the challenges for BIM implementation and the factors that affect the BIM usage are determined based on previous academic researches and expert opinions by conducting interviews and questionnaire surveys. Several methods are used to process information in order to obtain weights of different factors to make BIM widespread in Turkey. This study concluded interviews' and questionnaire surveys' outcomes and proposed some suggestions to promote the implementation of BIM in Turkey. We believe research findings will be a good reference for boosting BIM implementation in Turkey.Keywords: building information modelling, BIM implementations, Turkish construction industry, Turkish government sector projects
Procedia PDF Downloads 138807 Modelling Kinetics of Colour Degradation in American Pokeweed (Phytolacca americana) Extract Concentration
Authors: Seyed-Ahmad Shahidi, Salemeh Kazemzadeh, Mehdi Sharifi Soltani, Azade Ghorbani-HasanSaraei
Abstract:
The kinetics of colour changes of American Pokeweed extract, due to concentration by various heating methods was studied. Three different heating/evaporation processes were employed for production of American Pokeweed extract concentrate. The American Pokeweed extract was concentrated to a final 40 °Brix from an initial °Brix of 4 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final American Pokeweed extract concentration of 40 °Brix was achieved in 188, 216 and 320 min by using microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. All models were found to describe the L, a and b-data adequately. Results indicated that variation in TCD followed both first-order and combined kinetics models. This model implied that the colour formation and pigment destruction occurred during concentration processes of American Pokeweed extract.Keywords: American pokeweed, colour, concentration, kinetics
Procedia PDF Downloads 498806 Synthesis, Inhibitory Activity, and Molecular Modelling of 2-Hydroxy-3-Oxo-3-Phenylpropionate Derivatives as HIV-1-Integrase Inhibitors
Authors: O. J. Jesumoroti, Faridoon, R. Klein, K. A. Iobb, D. Mnkadhla, H. C. Hoppe, P. T. Kaye
Abstract:
The 1, 3-aryl diketo acids (DKA) based agents represent an important class of HIV integrase (IN) strand transfer inhibitors. In other to study the chelating role of the divalent metal ion in the inhibition of IN strand transfer, we designed and synthesized a series of 2-hydroxy-3-oxo-3-phenyl propionate derivatives with the notion that such compounds could interact with the divalent ion in the active site of IN. The synthetic sequence to the desired compounds involves the concept of Doebner knoevenagel condensation, Fischer esterification and ketohydroxylation using neuclophilic re-oxidant; compounds were characterized by their IR, IHNMR, 13CNMR, HRMS spectroscopic data and melting point determination. Also, molecular docking was employed in this study and it was revealed that there is interaction with the active site of the enzyme. However, there is disparity in the corresponding anti-HIV activity determined by the experimental bioassay. These compounds lack potency at low micromolar concentration when compared to the results of the docking studies. Nevertheless, the results of the study suggest modification of the aryl ring with one or two hydroxyl groups to improve the inhibitory activity.Keywords: anti-HIV-1 integrase, ketohydroxylation, molecular docking, propionate derivatives
Procedia PDF Downloads 194805 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution
Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy
Abstract:
The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.Keywords: cerebrovascular, compartmental model, CSF model, vascular network
Procedia PDF Downloads 275804 The Impact of Nurse-Physician Interprofessional Relationship on Nurses' Willingness to Engage in Leadership Roles: A Multilevel Modelling Approach
Authors: Sulaiman D. Al Sabei, Amy M. Ross, Christopher S. Lee
Abstract:
Nurse leaders play a fundamental role in transforming healthcare system and improving quality of patient care. Several healthcare organizations have called to increase the number of nurse leaders across all levels and in every practice setting. Identification of factors influencing nurses’ willingness to lead can inform healthcare leaders and policy makers of potentially illuminating strategies for establishing favorable work environments that motivate nurses to engage in leadership roles. The aim of this study was to investigate determinants of nurses’ willingness to engage in future leadership roles. The study was conducted at a public hospital in the Sultanate of Oman. A total of 171 registered nurses participated. A multilevel modeling was conducted. Findings revealed that 80% of nurses were likely to seek out opportunities to engage in leadership roles. The quality of the nurse-physician collegial relationships was a significant predictor of nurses’ willingness to lead. Establishing a work environment’s culture of positive nurse-physician relationships is critical to enhance nurses’ work attitude and engage them in leadership roles.Keywords: interprofessional relationship, leadership, motivation, nurses
Procedia PDF Downloads 192803 Whole Body Cooling Hypothermia Treatment Modelling Using a Finite Element Thermoregulation Model
Authors: Ana Beatriz C. G. Silva, Luiz Carlos Wrobel, Fernando Luiz B. Ribeiro
Abstract:
This paper presents a thermoregulation model using the finite element method to perform numerical analyses of brain cooling procedures as a contribution to the investigation on the use of therapeutic hypothermia after ischemia in adults. The use of computational methods can aid clinicians to observe body temperature using different cooling methods without the need of invasive techniques, and can thus be a valuable tool to assist clinical trials simulating different cooling options that can be used for treatment. In this work, we developed a FEM package applied to the solution of the continuum bioheat Pennes equation. Blood temperature changes were considered using a blood pool approach and a lumped analysis for intravascular catheter method of blood cooling. Some analyses are performed using a three-dimensional mesh based on a complex geometry obtained from computed tomography medical images, considering a cooling blanket and a intravascular catheter. A comparison is made between the results obtained and the effects of each case in brain temperature reduction in a required time, maintenance of body temperature at moderate hypothermia levels and gradual rewarming.Keywords: brain cooling, finite element method, hypothermia treatment, thermoregulation
Procedia PDF Downloads 311802 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran
Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro
Abstract:
The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis
Procedia PDF Downloads 529801 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand
Authors: Yosiya Chanta, Jantrararuk Tovaranont
Abstract:
Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change
Procedia PDF Downloads 98800 A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain
Authors: Benga Ebouele, Thomas Tengen
Abstract:
Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings.Keywords: dynamic modelling, energy used, hybrid inventory, supply chain
Procedia PDF Downloads 268799 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda
Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse
Abstract:
In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system
Procedia PDF Downloads 244798 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 442797 A Unified Approach for Naval Telecommunication Architectures
Authors: Y. Lacroix, J.-F. Malbranque
Abstract:
We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion
Procedia PDF Downloads 291796 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 226795 Investigating the Contemporary Architecture Education Challenges in India
Authors: Vriddhi Prasad
Abstract:
The paper briefly outlines the nature of contemporary Architecture Education in India and its present challenges with theoretically feasible solutions. It explores in detail the arduous position of architecture education owing to, privatization of higher education institutes in India, every changing demand of the technology driven industry and discipline, along with regional and cultural resources that should be explored academically for the enrichment of graduates. With the government's education policy of supporting privatization, a comprehensive role for the regulating body of Architecture Education becomes imperative. The paper provides key insights through empirical research into the nature of these roles and the areas which need attention in light of the problems. With the aid of critically acclaimed education model like Design Build, contextual retrofits for Indian institutes can be stressed for inclusion in the curriculum. The pairing of a private institute and public industry/research body and vice versa can lead to pro-economic and pro-social research environment. These reforms if stressed by an autonomous nationwide regulating body rather than the state will lead to uniformity and flexibility of curriculum which promotes the creation of fresh graduates who are adaptable to the changing needs.Keywords: architecture education, building information modelling, design build, pedagogy
Procedia PDF Downloads 224794 Quality Improvement Template for Undergraduate Nursing Education Curriculum Review and Analysis
Authors: Jennifer Stephens, Nichole Parker, Kristin Petrovic
Abstract:
To gain a better understanding of how students enrolled in a Bachelor of Nursing (BN) program are educated, faculty members in the BN program at Athabasca University (AU) in Alberta, Canada, developed a 3-phase comprehensive curriculum review project. Phase one of this review centered around hiring an external curriculum expert to examine and analyze the current curriculum and to propose recommendations focused on identifying gaps as well as building on strengths towards meeting changing health care trends. Phase two incorporated extensive institutional document analysis as well as qualitative and quantitative data collection in reciprocated critical reflection and has yielded insights into valuable processes, challenges, and solutions inherent to the complexities of undertaking curriculum review and analysis. Results of our phase one and two analysis generated a quality improvement (QI) template that could benefit other nursing education programs engaged in curriculum review and analysis. The key processes, lessons, and insights, as well as future project phase three plans, will be presented for iterative discussion and role modelling for other institutions undergoing, or planning, content-based curriculum review and evaluation.Keywords: curriculum, education, nursing, nursing faculty practice, quality improvement
Procedia PDF Downloads 146793 Safety Approach Highway Alignment Optimization
Authors: Seyed Abbas Tabatabaei, Marjan Naderan Tahan, Arman Kadkhodai
Abstract:
An efficient optimization approach, called feasible gate (FG), is developed to enhance the computation efficiency and solution quality of the previously developed highway alignment optimization (HAO) model. This approach seeks to realistically represent various user preferences and environmentally sensitive areas and consider them along with geometric design constraints in the optimization process. This is done by avoiding the generation of infeasible solutions that violate various constraints and thus focusing the search on the feasible solutions. The proposed method is simple, but improves significantly the model’s computation time and solution quality. On the other, highway alignment optimization through Feasible Gates, eventuates only economic model by considering minimum design constrains includes minimum reduce of circular curves, minimum length of vertical curves and road maximum gradient. This modelling can reduce passenger comfort and road safety. In most of highway optimization models, by adding penalty function for each constraint, final result handles to satisfy minimum constraint. In this paper, we want to propose a safety-function solution by introducing gift function.Keywords: safety, highway geometry, optimization, alignment
Procedia PDF Downloads 410792 Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process
Authors: Anis A. Ansari, M. Kamil
Abstract:
The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property.Keywords: 3D printing, fused deposition modeling (FDM), polylactic acid (PLA), print speed, nozzle temperature, hardness property
Procedia PDF Downloads 96791 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava
Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík
Abstract:
The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction
Procedia PDF Downloads 674790 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties
Procedia PDF Downloads 309789 Business Domain Modelling Using an Integrated Framework
Authors: Mohammed Hasan Salahat, Stave Wade
Abstract:
This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology
Procedia PDF Downloads 560788 Mechanism of Performance of Soil-Cement Columns under Shallow Foundations in Liquefiable Soil
Authors: Zaheer Ahmed Almani, Agha Faisal Habib Pathan, Aneel Kumar Hindu
Abstract:
In this study, the effects of ground reinforcement with stiff soil-cement columns on liquefiable ground and on the shallow foundation of structure were investigated. The modelling and analysis of shallow foundation of the structure founded on the composite reinforced ground were carried out with finite difference FLAC commercial software. The results showed that stiff columns were not effective to the redistribute the shear stresses in the composite ground, thus, were not effective to reduce shear stress and shear strain on the soil between the columns. The excessive pore pressure increase which is dependent on volumetric strain (contractive) tendency of loose sand upon shearing, was not reduced to a significant level that liquefaction potential could be remediated. Thus, mechanism of performance with reduction of pore pressure and consequent liquefaction was not predicted in numerical analysis. Nonetheless, the columns were effective to resist the load of structure in compression and reduced the liquefaction-induced large settlements of structure to tolerable limits when provided adjacent and beneath the pad of shallow foundation.Keywords: earthquake, liquefaction, mechanism, soil-cement columns
Procedia PDF Downloads 151787 A Theoretical Framework for Design Theories in Mobile Learning: A Higher Education Perspective
Authors: Paduri Veerabhadram, Antoinette Lombard
Abstract:
In this paper a framework for hypothesizing about mobile learning to complement theories of formal and informal learning is presented. As such, activity theory will form the main theoretical lens through which the elements involved in formal and informal learning for mobile learning will be explored, specifically related to context-aware mobile learning application. The author believes that the complexity of the relationships involved can best be analysed using activity theory. Activity theory, as a social, cultural and activity theory can be used as a mobile learning framework in an academic environment, but to develop an optimal artifact, through investigation of inherent system's contradictions. As such, it serves as a powerful modelling tool to explore and understand the design of a mobile learning environment in the study’s environment. The Academic Tool Kit Framework (ATKF) as also employed for designing of a constructivism learning environment, effective in assisting universities to facilitate lecturers to effectively implement learning through utilizing mobile devices. Results indicate a positive perspective of students in the use of mobile devices for formal and informal learning, based on the context-aware learning environment developed through the use of activity theory and ATKF.Keywords: collaborative learning, cooperative learning, context-aware learning environment, mobile learning, pedagogy
Procedia PDF Downloads 568786 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate
Authors: Mahfuzur Rahman
Abstract:
Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO
Procedia PDF Downloads 146785 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids
Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo
Abstract:
Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium
Procedia PDF Downloads 190784 Modelling the Long Rune of Aggregate Import Demand in Libya
Authors: Said Yousif Khairi
Abstract:
Being a developing economy, imports of capital, raw materials and manufactories goods are vital for sustainable economic growth. In 2006, Libya imported LD 8 billion (US$ 6.25 billion) which composed of mainly machinery and transport equipment (49.3%), raw material (18%), and food products and live animals (13%). This represented about 10% of GDP. Thus, it is pertinent to investigate factors affecting the amount of Libyan imports. An econometric model representing the aggregate import demand for Libya was developed and estimated using the bounds test procedure, which based on an unrestricted error correction model (UECM). The data employed for the estimation was from 1970–2010. The results of the bounds test revealed that the volume of imports and its determinants namely real income, consumer price index and exchange rate are co-integrated. The findings indicate that the demand for imports is inelastic with respect to income, index price level and The exchange rate variable in the short run is statistically significant. In the long run, the income elasticity is elastic while the price elasticity and the exchange rate remains inelastic. This indicates that imports are important elements for Libyan economic growth in the long run.Keywords: import demand, UECM, bounds test, Libya
Procedia PDF Downloads 361783 Experimental and Numerical Investigation on Deformation Behaviour of Single Crystal Copper
Authors: Suman Paik, P. V. Durgaprasad, Bijan K. Dutta
Abstract:
A study combining experimental and numerical investigation on the deformation behaviour of single crystals of copper is presented in this paper. Cylindrical samples were cut in specific orientations from high purity copper single crystal and subjected to uniaxial compression loading at quasi-static strain rate. The stress-strain curves along two different crystallographic orientations were then extracted. In order to study and compare the deformation responses, a single crystal plasticity model incorporating non-Schmid effects was developed assuming cross-slip plays an important role in orientation of the material. By making use of crystal plasticity finite element method, the model was applied to investigate the orientation dependence of the stress-strain behaviour of two crystallographic orientations. Finally, details of slip activities of deformed crystals were investigated by linking the orientation of slip lines with the theoretical traces of possible crystallographic planes. The experimentally determined active slip modes were matched with those determined by simulations.Keywords: crystal plasticity, modelling, non-Schmid effects, finite elements, finite strain
Procedia PDF Downloads 213782 An Optimal Control Model to Determine Body Forces of Stokes Flow
Authors: Yuanhao Gao, Pin Lin, Kees Weijer
Abstract:
In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method
Procedia PDF Downloads 405781 Analyzing Log File of Community Question Answering for Online Learning
Authors: Long Chen
Abstract:
With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training
Procedia PDF Downloads 441780 Effect of Wettability Alteration in Low Salt Water Injection Modeling
Authors: H. Vahdani
Abstract:
By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.Keywords: low salt water injection, wettability alteration, modelling, relative permeability
Procedia PDF Downloads 495