Search results for: online and adaptive learning
8749 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM
Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method
Procedia PDF Downloads 4048748 Computing Customer Lifetime Value in E-Commerce Websites with Regard to Returned Orders and Payment Method
Authors: Morteza Giti
Abstract:
As online shopping is becoming increasingly popular, computing customer lifetime value for better knowing the customers is also gaining more importance. Two distinct factors that can affect the value of a customer in the context of online shopping is the number of returned orders and payment method. Returned orders are those which have been shipped but not collected by the customer and are returned to the store. Payment method refers to the way that customers choose to pay for the price of the order which are usually two: Pre-pay and Cash-on-delivery. In this paper, a novel model called RFMSP is presented to calculated the customer lifetime value, taking these two parameters into account. The RFMSP model is based on the common RFM model while adding two extra parameter. The S represents the order status and the P indicates the payment method. As a case study for this model, the purchase history of customers in an online shop is used to compute the customer lifetime value over a period of twenty months.Keywords: RFMSP model, AHP, customer lifetime value, k-means clustering, e-commerce
Procedia PDF Downloads 3218747 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 1488746 Consumer Behaviour Model for Apparel E-Tailers Using Structural Equation Modelling
Authors: Halima Akhtar, Abhijeet Chandra
Abstract:
The paper attempts to analyze the factors that influence the Consumer Behavior to purchase apparel through the internet. The intentions to buy apparels online were based on in terms of user style, orientation, size and reputation of the merchant, social influence, perceived information utility, perceived ease of use, perceived pleasure and attractiveness and perceived trust and risk. The basic framework used was Technology acceptance model to explain apparels acceptance. A survey was conducted to gather the data from 200 people. The measures and hypotheses were analyzed using Correlation testing and would be further validated by the Structural Equation Modelling. The implications of the findings for theory and practice could be used by marketers of online apparel websites. Based on the values obtained, we can conclude that the factors such as social influence, Perceived information utility, attractiveness and trust influence the decision for a user to buy apparels online. The major factors which are found to influence an online apparel buying decision are ease of use, attractiveness that a website can offer and the trust factor which a user shares with the website.Keywords: E-tailers, consumer behaviour, technology acceptance model, structural modelling
Procedia PDF Downloads 1868745 ANFIS Based Technique to Estimate Remnant Life of Power Transformer by Predicting Furan Contents
Authors: Priyesh Kumar Pandey, Zakir Husain, R. K. Jarial
Abstract:
Condition monitoring and diagnostic is important for testing of power transformer in order to estimate the remnant life. Concentration of furan content in transformer oil can be a promising indirect measurement of the aging of transformer insulation. The oil gets contaminated mainly due to ageing. The present paper introduces adaptive neuro fuzzy technique to correlate furanic compounds obtained by high performance liquid chromatography (HPLC) test and remnant life of the power transformer. The results are obtained by conducting HPLC test at TIFAC-CORE lab, NIT Hamirpur on thirteen power transformer oil samples taken from Himachal State Electricity Board, India.Keywords: adaptive neuro fuzzy technique, furan compounds, remnant life, transformer oil
Procedia PDF Downloads 4648744 Organizational Learning Strategies for Building Organizational Resilience
Authors: Stephanie K. Douglas, Gordon R. Haley
Abstract:
Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.Keywords: human resource development, human resource management, organizational learning, organizational resilience
Procedia PDF Downloads 1378743 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques
Authors: Gurmail Singh
Abstract:
Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility
Procedia PDF Downloads 1278742 An Online Space for Practitioners in the Water, Sanitation and Hygiene Sector
Authors: Olivier Mills, Bernard McDonell, Laura A. S. MacDonald
Abstract:
The increasing availability and quality of internet access throughout the developing world provides an opportunity to utilize online spaces to disseminate water, sanitation and hygiene (WASH) knowledge to practitioners. Since 2001, CAWST has provided in-person education, training and consulting services to thousands of WASH practitioners all over the world, supporting them to start, troubleshoot, improve and expand their WASH projects. As CAWST continues to grow, the organization faces challenges in meeting demand from clients and in providing consistent, timely technical support. In 2012, CAWST began utilizing online spaces to expand its reach by developing a series of resources websites and webinars. CAWST has developed a WASH Education and Training resources website, a Biosand Filter (BSF) Knowledge Base, a Household Water Treatment and Safe Storage Knowledge Base, a mobile app for offline users, a live chat support tool, a WASH e-library, and a series of webinar-style online training sessions to complement its in-person capacity development services. In order to determine the preliminary outcomes of providing these online services, CAWST has monitored and analyzed registration to the online spaces, downloads of the educational materials, and webinar attendance; as well as conducted user surveys. The purpose of this analysis was to find out who was using the online spaces, where users came from, and how the resources were being used. CAWST’s WASH Resources website has served over 5,800 registered users from 3,000 organizations in 183 countries. Additionally, the BSF Knowledge Base has served over 1000 registered users from 68 countries, and over 540 people from 73 countries have attended CAWST’s online training sessions. This indicates that the online spaces are effectively reaching a large numbers of users, from a range of countries. A 2016 survey of the Biosand Filter Knowledge Base showed that approximately 61% of users are practitioners, and 39% are either researchers or students. Of the respondents, 46% reported using the BSF Knowledge Base to initiate a BSF project and 43% reported using the information to train BSF technicians. Finally, 61% indicated they would like even greater support from CAWST’s Technical Advisors going forward. The analysis has provided an encouraging indication that CAWST’s online spaces are contributing to its objective of engaging and supporting WASH practitioners to start, improve and expand their initiatives. CAWST has learned several lessons during the development of these online spaces, in particular related to the resources needed to create and maintain the spaces, and respond to the demand created. CAWST plans to continue expanding its online spaces, improving user experience of the sites, and involving new contributors and content types. Through the use of online spaces, CAWST has been able to increase its global reach and impact without significantly increasing its human resources by connecting WASH practitioners with the information they most need, in a practical and accessible manner. This paper presents on CAWST’s use of online spaces through the CAWST-developed platforms discussed above and the analysis of the use of these platforms.Keywords: education and training, knowledge sharing, online resources, water and sanitation
Procedia PDF Downloads 2668741 A Review on Pathological Gaming among Adolescents
Authors: Anjali Malik
Abstract:
This paper presents a review of the literature on behavioral addictions with a particular focus on understanding online gaming habits among adolescents. Extant researches yielded many different sets of antecedent factors for developing pathological online gaming behavior. This paper draws findings from the most-cited publications most closely associated with factors explaining why individuals develop such kind of problematic behavior. What emerges as central to understanding this phenomenon is the presence of multiple variable causes that take into account the individual, the environment and their interaction to explain the risk behavior such as pathological online gaming. In addition to that role of some mediating factors and pull factors has also been discussed, along with the consequences on personal, social and academic performance resulting from such kind of addictive behavior. The paper also makes recommendations for future research including developing a deeper understanding of the phenomena studied here by examining the relative contribution of these multiple-risk contexts.Keywords: pathological gaming, gaming addiction, adolescents, behavior
Procedia PDF Downloads 2308740 Antecedents of Online Trust Towards E-Retailers for Repeat Buyers: An Empirical Study in Indian Context
Authors: Prageet Aeron, Shilpi Jain
Abstract:
The present work explores the trust building mechanisms in the context of e-commerce vendors and reconciles trust as a cognitive as well as a knowledge-based mechanism in the framework which is developed. The paper conducts an empirical examination of the variables integrity, benevolence, and ability with trust as the dependent variable and propensity to trust as the mediating variable. Authors establish ability and integrity as primary antecedents as well as establish the central role of trust propensity in the online context for Indian buyers. Authors further identify that benevolence in the context of Indian buyers online behaviour seems insignificant, and this seems counter-intutive given the role of discounts in the Indian market. Lastly, authors conclude that the role of media and social influencers in building a perception of trust seems of little consequence.Keywords: e-commerce, trust, e-retailers, propensity to trust
Procedia PDF Downloads 3568739 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 1548738 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 2718737 The Determinants of Senior Students, Behavioral Intention on the Blended E-Learning for the Ceramics Teaching Course at the Active Aging University
Authors: Horng-Jyh Chen, Yi-Fang Chen, Chien-Liang Lin
Abstract:
In this paper, the authors try to investigate the determinants of behavioral intention of the blended e-learning course for senior students at the Active Ageing University in Taiwan. Due to lower proficiency in the use of computers and less experience on learning styles of the blended e-learning course for senior students will be expected quite different from those for most young students. After more than five weeks course for two years the questionnaire survey is executed to collect data for statistical analysis in order to understand the determinants of the behavioral intention for senior students. The object of this study is at one of the Active Ageing University in Taiwan total of 84 senior students in the blended e-learning for the ceramics teaching course. The research results show that only the perceived usefulness of the blended e-learning course has significant positive relationship with the behavioral intention.Keywords: Active Aging University, blended e-learning, ceramics teaching course, behavioral intention
Procedia PDF Downloads 4108736 Students' Performance, Perception and Attitude towards Interactive Online Modules to Improve Undergraduate Quantitative Skills in Biological Science
Authors: C. Suphioglu , V. Simbag, J. Markham, C. Coady, S. Belward, G. Di Trapani, P. Chunduri, J. Chuck, Y. Hodgson, L. Lluka, L. Poladian, D. Watters
Abstract:
Advances in science have made quantitative skills (QS) an essential graduate outcome for undergraduate science programs in Australia and other parts of the world. However, many students entering into degrees in Australian universities either lack these skills or have little confidence in their ability to apply them in their biological science units. It has been previously reported that integration of quantitative skills into life science programs appears to have a positive effect on student attitudes towards the importance of mathematics and statistics in biological sciences. It has also been noted that there is deficiency in QS resources available and applicable to undergraduate science students in Australia. MathBench (http://mathbench.umd.edu) is a series of online modules involving quantitative biology scenarios developed by the University of Maryland. Through collaboration with Australian universities, a project was funded by the Australian government through its Office for Learning and Teaching (OLT) to develop customized MathBench biology modules to promote the quantitative skills of undergraduate biology students in Australia. This presentation will focus on the assessment of changes in performance, perception and attitude of students in a third year Cellular Physiology unit after use of interactive online cellular diffusion modules modified for the Australian context. The modules have been designed to integrate QS into the biological science curriculum using familiar scenarios and informal language and providing students with the opportunity to review solutions to diffusion QS-related problems with interactive graphics. This paper will discuss results of pre and post MathBench quizzes composed of general and module specific questions that assessed change in student QS after MathBench; and pre and post surveys, administered before and after using MathBench modules to evaluate the students’ change in perception towards the influence of the modules, their attitude towards QS and on the development of their confidence in completing the inquiry-based activity as well as changes to their appreciation of the relevance of mathematics to cellular processes. Results will be compared to changes reported by Thompson et al., (2010) at the University of Maryland and implications for further integration of interactive online activities in the curriculum will be explored and discussed.Keywords: quantitative skills, MathBench, maths in biology
Procedia PDF Downloads 3838735 Educational Experiences in Engineering in the COVID Era and Their Comparative Analysis, Spain, March to June 2020
Authors: Borja Bordel, Ramón Alcarria, Marina Pérez
Abstract:
In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.Keywords: educational experience, online education, higher education digitalization, COVID, Spain
Procedia PDF Downloads 1408734 Immersive Learning in University Classrooms
Authors: Raminder Kaur
Abstract:
This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.Keywords: virtual reality, anthropology, immersive learning, university
Procedia PDF Downloads 838733 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1258732 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter
Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales
Abstract:
The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.Keywords: human language technologies, language modelling, offensive language detection, violent online content
Procedia PDF Downloads 1318731 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 968730 The Effects of Aging on Visuomotor Behaviors in Reaching
Authors: Mengjiao Fan, Thomson W. L. Wong
Abstract:
It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration
Procedia PDF Downloads 3128729 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact
Authors: Tom O'Mahony
Abstract:
This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.Keywords: deep approaches, formative assessment, project-based learning, student-centered learning
Procedia PDF Downloads 1128728 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana
Authors: Ivy Rose Mathew
Abstract:
The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.Keywords: distance learning, efficacy, learning experience, technology supported model
Procedia PDF Downloads 2478727 Generating Product Description with Generative Pre-Trained Transformer 2
Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen
Abstract:
Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining
Procedia PDF Downloads 1978726 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information
Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach
Abstract:
Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.Keywords: mutual information, EMPCA, Scott, probability distributions
Procedia PDF Downloads 2498725 Indoor Thermal Comfort in Educational Buildings in the State of Kuwait
Authors: Sana El-Azzeh, Farraj Al-Ajmi, Abdulrahman Al-Aqqad, Mohamed Salem
Abstract:
Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature.Keywords: indoor thermal comfort, educational facility, gender analysis, dry desert climate
Procedia PDF Downloads 1578724 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix
Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod
Abstract:
In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX
Procedia PDF Downloads 6068723 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education
Authors: Joseph Osodo, Motsa Thobekani Phila
Abstract:
The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.Keywords: e-learning, performance, COVID-19, history, connectivism
Procedia PDF Downloads 768722 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, social networking, education, Malaysia
Procedia PDF Downloads 4248721 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 1218720 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 245