Search results for: nonlinear rotor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1580

Search results for: nonlinear rotor

410 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar

Abstract:

The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.

Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW

Procedia PDF Downloads 408
409 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 536
408 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames

Authors: Kyung-Suk Choi, Hyung-Joon Kim

Abstract:

Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.

Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation

Procedia PDF Downloads 620
407 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker

Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang

Abstract:

The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).

Keywords: inertial navigation, adaptive filtering, star tracker, FOG

Procedia PDF Downloads 80
406 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 93
405 Multifractal Behavior of the Perturbed Cerbelli-Giona Map: Numerical Computation of ω-Measure

Authors: Ibrahim Alsendid, Rob Sturman, Benjamin Sharp

Abstract:

In this paper, we consider a family of 2-dimensional nonlinear area-preserving transformations on the torus. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results, we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments that define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated and compared with the distribution of periodic points of the system.

Keywords: Discrete-time dynamical systems, Fractal geometry, Multifractal behaviour of the Perturbed map, Multifractal of Dynamical systems

Procedia PDF Downloads 211
404 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 275
403 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 20
402 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: Manuel E. Soto-López, Israel Gaxiola-Avendaño, Alfredo Reyes-Salazar, Eden Bojórquez, Sonia E. Ruiz

Abstract:

The seismic responses of steel buildings with semi-rigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to this results, steel buildings with PC are a viable option in highseismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: inter-story drift, nonlinear time-history analysis, post-tensioned connections, steel buildings

Procedia PDF Downloads 501
401 Improvement of Bone Scintography Image Using Image Texture Analysis

Authors: Yousif Mohamed Y. Abdallah, Eltayeb Wagallah

Abstract:

Image enhancement allows the observer to see details in images that may not be immediately observable in the original image. Image enhancement is the transformation or mapping of one image to another. The enhancement of certain features in images is accompanied by undesirable effects. To achieve maximum image quality after denoising, a new, low order, local adaptive Gaussian scale mixture model and median filter were presented, which accomplishes nonlinearities from scattering a new nonlinear approach for contrast enhancement of bones in bone scan images using both gamma correction and negative transform methods. The usual assumption of a distribution of gamma and Poisson statistics only lead to overestimation of the noise variance in regions of low intensity but to underestimation in regions of high intensity and therefore to non-optional results. The contrast enhancement results were obtained and evaluated using MatLab program in nuclear medicine images of the bones. The optimal number of bins, in particular the number of gray-levels, is chosen automatically using entropy and average distance between the histogram of the original gray-level distribution and the contrast enhancement function’s curve.

Keywords: bone scan, nuclear medicine, Matlab, image processing technique

Procedia PDF Downloads 511
400 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading

Authors: Chayanon Hansapinyo

Abstract:

This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section cold-formed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. were analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.

Keywords: buckling behavior, irregular section, cold-formed steel, concentric loading

Procedia PDF Downloads 276
399 Synthesis, Structural Characterization and Biological Activity of Bis{(E)-1-[(2,4,6-Tribromophenyl) Diazenyl] Naphthalen-2-Olato} Copper (II) Dimethyl Sulfoxide Monosolvate

Authors: Hassiba Bougueria, Nesrine Benarous, Souheyla Chetioui

Abstract:

Azo dyes are one of the most widely used compounds in organic chemistry, primarily due to their relatively simple preparation methods. They have therefore been widely used, in particular as colorants for textiles, printing inks, cosmetics, and food additives. In addition to their use as dyes, azo compounds have attracted much attention from chemists as their potential applications are important in coordination chemistry, metal-organic frameworks (MOF) structures, COF (covalent-organic frameworks), and catalysis. Moreover, they have found many applications in different fields, such as nonlinear optics, optical storage, photoluminescence, and magnetism. The compound bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate, the CuII atom is tetracoordinate with a square-planar geometry, surrounded by two bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalene-2-olate ligands via two N atoms and two O atoms. The O-Cu-O angles and N-Cu-N are of the order of 177.90(16)° and 177.8(2)°, respectively. The distances Cu-O and Cu- N are 1.892(4) Å and 1.976(4) Å, respectively. The cohesion of the crystal is ensured by hydrogen bonds of the C—H…O type and by π=π staking interactions [centroid–centroid distance = 3.679(4)Å]. The DMSO solvent molecule is disordered at two positions with occupancy rates of 0.70 and 0.30.

Keywords: azo dyes, DRX, structural characterization, biological activity

Procedia PDF Downloads 87
398 Modeling of Long Wave Generation and Propagation via Seabed Deformation

Authors: Chih-Hua Chang

Abstract:

This study uses a three-dimensional (3D) fully nonlinear model to simulate the wave generation problem caused by the movement of the seabed. The numerical model is first simplified into two dimensions and then compared with the existing two-dimensional (2D) experimental data and the 2D numerical results of other shallow-water wave models. Results show that this model is different from the earlier shallow-water wave models, with the phase being closer to the experimental results of wave propagation. The results of this study are also compared with those of the 3D experimental results of other researchers. Satisfactory results can be obtained in both the waveform and the flow field. This study assesses the application of the model to simulate the wave caused by the circular (radius r0) terrain rising or falling (moving distance bm). The influence of wave-making parameters r0 and bm are discussed. This study determines that small-range (e.g., r0 = 2, normalized by the static water depth), rising, or sinking terrain will produce significant wave groups in the far field. For large-scale moving terrain (e.g., r0 = 10), uplift and deformation will potentially generate the leading solitary-like waves in the far field.

Keywords: seismic wave, wave generation, far-field waves, seabed deformation

Procedia PDF Downloads 86
397 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique

Authors: Prashant Motwani, Arghadeep Laskar

Abstract:

The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.

Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder

Procedia PDF Downloads 244
396 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache

Abstract:

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting

Procedia PDF Downloads 54
395 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 225
394 Failure Mechanisms of Isolated vs. in Aggregate Historical Buildings: A Case Study for Timisoara, Romania

Authors: I. Apostol, M. Mosoarca

Abstract:

Romania is a seismic country, with two major seismic zones, Vrancea and Banat. One of the most important cities from Banat seismic area is Timisoara, where a lot of valuable historical buildings were built before any design codes, but still they kept their stability during past earthquakes. This article presents the influence of the adjacent buildings during an earthquake and the way that the specific failure mechanism is changed when the building is part of an aggregate. The investigation was made using nonlinear analysis based on Tremuri software, first analyzing the buildings as isolated and second, considering the entire aggregate of buildings. There were noticed significant differences through the two situations regarding the specific failure mechanism activated for each building, showing the fact that in some situations, the presence of the adjacent buildings has positive or negative contribution for the seismic behavior of the analyzed one. The difference between the failure mechanism of the same buildings considered isolated and in aggregate aims to provide explications for the good structural state of the existing historical areas of Timisoara, as part of a larger multidisciplinary study, which will help local authorities to prioritize the consolidation works for the historical buildings in order to assure that the history of the city will be kept alive for the next generations.

Keywords: failure mechanism, analysis, aggregate, masonry, earthquake

Procedia PDF Downloads 146
393 Green Supply Chain Design: A Mathematical Modeling Approach

Authors: Nusrat T. Chowdhury

Abstract:

Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.

Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade

Procedia PDF Downloads 241
392 Second Order Cone Optimization Approach to Two-stage Network DEA

Authors: K. Asanimoghadam, M. Salahi, A. Jamalian

Abstract:

Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.

Keywords: network DEA, conic optimization, undesirable output, SBM

Procedia PDF Downloads 194
391 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method

Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 113
390 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 476
389 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda

Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse

Abstract:

In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.

Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system

Procedia PDF Downloads 244
388 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation

Procedia PDF Downloads 311
387 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 91
386 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: axial deformation, free vibration, Galerkin finite element method, large amplitude, variational method

Procedia PDF Downloads 254
385 Evaluating Hyperelastic Properties of Geotextiles under Uniaxial Loading

Authors: Belhadj Fatma Zohra, Belhadj Ahmed Fouad, Chabaat Mohamed

Abstract:

The properties of geotextiles can impact the long-term behavior of reinforced soils, which can lead to unexpected problems such as instability and excessive deformation. Research into the material’s rheological properties and nonlinear behavior is required to overcome this issue. This study focuses on six isotropic hyperelastic models (Neo-Hooke, Mooney-Rivlin, Ogden, Yeoh, Arruda-Boyce, and Van der Waals) commonly used to describe the behavior of PET woven geotextiles in civil engineering applications. The models are adjusted for uniaxial tension testing in the warp and weft directions based on experimental data; the Yeoh and Neo-Hooke models accurately predict the behavior of these geotextiles. The study aims to enhance an understanding of how geotextiles behave under varying loads through testing and finite element simulations. The strong correlation between experimental and simulation results can help develop hyperelastic material models for geotextiles. This framework can be beneficial for manufacturers and engineers in addressing soil-structure interaction concerns effectively in their projects.

Keywords: soil-structure interaction interface, geotextiles rheological characteristics, hyperelastic models, uniaxial tension testing, FEA modeling

Procedia PDF Downloads 8
384 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 163
383 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 418
382 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements

Procedia PDF Downloads 221
381 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 180