Search results for: keratin protein fiber
2346 Admission C-Reactive Protein Serum Levels and In-Hospital Mortality in the Elderly Admitted to the Acute Geriatrics Department
Authors: Anjelika Kremer, Irina Nachimov, Dan Justo
Abstract:
Background: C-reactive protein (CRP) serum levels are commonly measured in hospitalized patients. Elevated admission CRP serum levels and in-hospital mortality has been seldom studied in the general population of elderly patients admitted to the acute Geriatrics department. Methods: A retrospective cross-sectional study was conducted at a tertiary medical center. Included were all elderly patients (age 65 years or more) admitted to a single acute Geriatrics department from the emergency room between April 2014 and January 2015. CRP serum levels were measured routinely in all patients upon the first 24 hours of admission. A logistic regression analysis was used to study if admission CRP serum levels were associated with in-hospital mortality independent of age, gender, functional status, and co-morbidities. Results: Overall, 498 elderly patients were included in the analysis: 306 (61.4%) female patients and 192 (38.6%) male patients. The mean age was 84.8±7.0 years (median: 85 years; IQR: 80-90 years). The mean admission CRP serum levels was 43.2±67.1 mg/l (median: 13.1 mg/l; IQR: 2.8-51.7 mg/l). Overall, 33 (6.6%) elderly patients died during the hospitalization. A logistic regression analysis showed that in-hospital mortality was independently associated with history of stroke (p < 0.0001), heart failure (p < 0.0001), and admission CRP serum levels (p < 0.0001) – and to a lesser extent with age (p = 0.042), collagen vascular disease (p=0.011), and recent venous thromboembolism (p=0.037). Receiver operating characteristic (ROC) curve showed that admission CRP serum levels predict in-hospital mortality fairly with an area under the curve (AUC) of 0.694 (p < 0.0001). Cut-off value with maximal sensitivity and specificity was 19.7 mg/L. Conclusions: Admission CRP serum levels may be used to predict in-hospital mortality in the general population of elderly patients admitted to the acute Geriatrics department.Keywords: c-reactive protein, elderly, mortality, prediction
Procedia PDF Downloads 2362345 Biodistribution of Fluorescence-Labelled Epidermal Growth Factor Protein from Slow Release Nanozolid Depots in Mouse
Authors: Stefan Gruden, Charlott Brunmark, Bo Holmqvist, Erwin D. Brenndorfer, Martin Johansson, Jian Liu, Ying Zhao, Niklas Axen, Moustapha Hassan
Abstract:
Aim: The study was designed to evaluate the ability of the calcium sulfate-based NanoZolid® drug delivery technology to locally release the epidermal growth factor (EGF) protein while maintaining its biological activity. Methods: NanoZolid-formulated EGF protein labelled with a near-infrared dye (EGF-NIR) depots or EGF-NIR dissolved in PBS were injected subcutaneously into mice bearing EGF receptor (EGFR) positive human A549 lung cancer tumors inoculated subcutaneously. The release and biodistribution of the EGF-NIR were investigated in vivo longitudinally up to 96 hours post-administration, utilizing whole-body fluorescence imaging. In order to confirm the in vivo findings, histological analysis of tumor cryosections was performed to investigate EGF-NIR fluorescent signal and EGFR expression level by immunofluorescence labelling. Results: The in vivo fluorescence imaging showed a controlled release profile of the EGF-NIR loaded in the NanoZolid depots compared to free EGF-NIR. Histological analysis of the tumors further demonstrated a prevailing distribution of EGF-NIR in regions with high levels of EGFR expression. Conclusion: Calcium sulfate based depots can be used to formulate EGF while maintaining its biological activity, e.g., receptor binding capability. This may have good clinical potential for local delivery of biomolecules to enhance treatment efficacy and minimize systemic adverse effects.Keywords: bioresorbable, calcium sulfate, controlled release, NanoZolid
Procedia PDF Downloads 1632344 Effect of Supplementation with Fresh Citrus Pulp on Growth Performance, Slaughter Traits and Mortality in Guinea Pigs
Authors: Carlos Minguez, Christian F. Sagbay, Erika E. Ordoñez
Abstract:
Guinea pigs (Cavia porcellus) play prominent roles as experimental models for medical research and as pets. However, in developing countries like South America, the Philippines, and sub-Saharan Africa, the meat of guinea pigs is an economic source of animal protein for the poor and malnourished humans because guinea pigs are mainly fed with forage and do not compete directly with human beings for food resources, such as corn or wheat. To achieve efficient production of guinea pigs, it is essential to provide insurance against vitamin C deficiency. The objective of this research was to investigate the effect of the partial replacement of alfalfa with fresh citrus pulp (Citrus sinensis) in a diet of guinea pigs on the growth performance, slaughter traits and mortality during the fattening period (between 20 and 74 days of age). A total of 300 guinea pigs were housed in collective cages of about ten animals (2 x 1 x 0.4 m) and were distributed into two completely randomized groups. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat). Control group was supplied with fresh alfalfa as forage. In the treatment group, 30% of alfalfa was replaced by fresh citrus pulp. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered, and slaughter traits, including live weight at slaughter (LWS), full gastrointestinal tract weight (FGTW), hot carcass weight (with head; HCW), cold carcass weight (with head; CCW), drip loss percentage (DLP) and dressing out carcass yield percentage (DCY), were evaluated. Contrasts between groups were obtained by calculated generalized least squares values. Mortality was evaluated by Fisher's exact test due to low numbers in some cells. In the first week, there were significant differences in the growth traits BW, ADG, FI, and FCR, which were superior in control group. These differences may have been due to the origin of the young guinea pigs, which, before weaning, were all raised without fresh citrus pulp, and they were not familiarized with the new supplement. In the second week, treatment group had significantly increased ADG compared with control group, which may have been the result of a process of compensatory growth. During subsequent weeks, no significant differences were observed between animals raised in the two groups. Neither were any significant differences observed across the total fattening period. No significant differences in slaughter traits or mortality rate were observed between animals from the two groups. In conclusion, although there were no significant differences in growth performance, slaughter traits, or mortality, the use of fresh citrus pulp is recommended. Fresh citrus pulp is a by-product of orange juice industry and it is cheap or free. Forage made with fresh citrus pulp could reduce about of 30 % the quantity of alfalfa in guinea pig for meat and as consequence, reduce the production costs.Keywords: fresh citrus, growth, Guinea pig, mortality
Procedia PDF Downloads 1902343 A Secreted Protein Can Attenuate High Fat Diet Induced Obesity and Metabolic Syndrome in Mice
Authors: Abdul Soofi, Katherine Wolf, Egon Ranghini, Gregory Dressler
Abstract:
Obesity and its associated complications, such as insulin resistance and non-alcoholic fatty liver disease, are reaching epidemic proportions. In mice, the TGF-β superfamily is implicated in the regulation of white and brown adipose tissues differentiation. The Kielin/Chordin-like Protein (KCP) is a secreted regulator of the TGF-β superfamily pathways that can inhibit both TGF-β and Activin signals while enhancing the Bone Morphogenetic protein (BMP) signaling. However, the effects of KCP on metabolism and obesity have not been studied in animal models. Thus, we examined the effects of KCP loss or gain of function in mice that were maintained on either a regular or a high fat diet. Loss of KCP sensitized mice to obesity and associated complications such as hepatic steatosis and glucose intolerance. In contrast, transgenic mice that expressed KCP in the kidney, liver and adipose tissues were resistant to developing high fat diet induced obesity and had significantly reduced white adipose tissue. KCP over-expression was able to shift the pattern of Smad signaling in vivo, to increase the levels of P-Smad1 and decrease P-Smad3, resulting in resistance to high fat diet induced hepatic steatosis and glucose intolerance. In aging mice, loss of KCP promoted liver pathology even when mice were fed a normal diet. The data demonstrate that shifting the TGF-β superfamily signaling with a secreted inhibitor or enhancer can alter the physiology of adipose tissue to reduce obesity and can inhibit the initiation and progression of hepatic steatosis to significantly reduce the effects of high fat diet induced metabolic disease.Keywords: adipose tissue, KCP, obesity, TGF-β, BMP, hepatic steatosis, metabolic syndrome
Procedia PDF Downloads 3522342 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product
Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani
Abstract:
Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability
Procedia PDF Downloads 2772341 Parametric Study on the Behavior of Reinforced Concrete Continuous Beams Flexurally Strengthened with FRP Plates
Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour
Abstract:
External bonding of fiber reinforced polymer (FRP) plates to reinforced concrete (RC) beams is an effective technique for flexural strengthening. This paper presents an analytical parametric study on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers, conducted using simple uniaxial nonlinear finite element model (UNFEM). UNFEM is able to estimate the load-carrying capacity, different failure modes and the interfacial stresses of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. The study investigated the effect of five key parameters on the behavior and moment redistribution of FRP-reinforced continuous beams. The investigated parameters were the length of the FRP plate, the width and the thickness of the FRP plate, the ratio between the area of the FRP plate to the concrete area, the cohesive shear strength of the adhesive layer, and the concrete compressive strength. The investigation resulted in a number of important conclusions reflecting the effects of the studied parameters on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates.Keywords: continuous beams, parametric study, finite element, fiber reinforced polymer
Procedia PDF Downloads 3672340 Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)
Authors: Ling-Ling E., Hong-Chen Liu, Dong-Sheng Wang, Fang Su, Xia Wu, Zhan-Ping Shi, Yan Lv, Jia-Zhu Wang
Abstract:
Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects.Keywords: nano-hydroxyapatite/collagen/poly (L-lactide), dental pulp stem cell, recombinant human bone morphogenetic protein, bone tissue engineering, alveolar bone
Procedia PDF Downloads 3972339 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes
Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck
Abstract:
Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.Keywords: caveolae, lipid metabolism, obesity, septins
Procedia PDF Downloads 2112338 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120
Authors: Rishi Saxena
Abstract:
Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)
Procedia PDF Downloads 1322337 Effect pH on Chemical and Physical Properties of Iranian Fetta Cheese
Authors: M. Dezyani, R. Ezzati, H. Mirzaei
Abstract:
The objectives of this study were to determine the effect of pH on chemical, structural, and functional properties of Fetta cheese, and to relate changes in structure to changes in cheese unctionality. Fetta cheese was obtained from a cheese-production facility and stored at 4°C. Ten days after manufacture, the cheese was cut into blocks that were vacuum-packaged and stored for 4 d at 4°C. Cheese blocks were then high-pressure injected one, three, or five times with a 20% (wt/wt) glucono-δ-lactone solution. Successive injections were performed 24 h apart. Cheese blocks were then analyzed after 40 d of storage at 4°C. Acidulant injection decreased cheese pH from 5.3 in the uninjected cheese to 4.7 after five injections. Decreased pH increased the content of soluble calcium and slightly decreased the total calcium content of cheese. At the highest level, injection of acidulant promoted syneresis. Thus, after five injections, the moisture content of cheese decreased from 34 to 31%, which esulted in decreased cheese weight. Lowered cheese pH, 4.7 compared with 5.3, also resulted in contraction of the protein matrix. Acidulant injection decreased cheese hardness and cohesiveness, and the cheese became more crumbly.Keywords: calcium, high-pressure injection, protein matrix, syneresis
Procedia PDF Downloads 4792336 Transcriptomic and Translational Regulation of Peroxisome Proliferator-Activated Receptors after Different Feedings in Salmon
Authors: Mahsa Jalili, Essa Ehsan Khan, Signe Dille Lovmo, Augustine Akruwe, Egil Lien, Rolf Erik Olsen, Trygve Sigholt, Atle Magnus Bones
Abstract:
Data from the Norwegian Directorate of Fisheries reported that >1.2 million tons of Atlantic salmon were produced in Norway aquaculture industry in 2016. Peroxisome proliferator-activated receptors (PPARs) are one of the key transcription factor families that respond to nutritional ligands. Recent studies have shown the connection between PPARs with lipid and carbohydrate metabolism in aquaculture. To our knowledge, there is no published data about the effects of krill meal, soybean meal, Bactocell ® and butyrate feedings compared to control group on PPARs gene and protein expressions in Atlantic salmon. Fish, 1year +postsmolt, average weight 250 gram were cultured for 12 weeks after acclimatization by control commercial feeding in 2 weeks after hatchery. Water oxygen rate, salinity, and temperature were monitored every second day. At the end of the trial, fish were taken from tanks randomly, and four replicates per group were collected and stored in -80 freezers until analysis. Total RNA extracted from posterior part of dorsal fin muscle tissues and Nanodrop and Bioanalyzer was used to check the quality of RNA. Gene expression of PPAR α, β and γ were determined by RT-PCR. The expression of genes of interest was measured relative to control group after normalization to three reference genes. Total protein concentration was calculated by Bradford method, and protein expression was determined with primary PPARγ antibody by western blot. All data were analyzed by ANOVA followed by Benjamini-Hochberg and Bonferroni tests. Probability values <0.05 considered significant. Bactocell® and butyrate groups showed significantly lower PPARα expression. PPARβ and γ were not significantly different among groups. PPARγ mRNA expression was approximately consistent with protein expression pattern, except than butyrate group showed lower mRNA level. The order of PPARγ expression was Bactocell® > soy meal > butyrate > krill meal > control respectively. PPARβ gene expression decreased more in soy meal > butyrate > krill meal > Bactocell® > control groups respectively. In conclusion, the increased expression of PPARγ and α is proposed to represent a reduction tendency of lipid storage in fish fed by Bactocell®, butyrate, soy and krill meal.Keywords: aquaculture, blotting western, gene expression, krill protein extract, prebiotics, probiotics, Salmo salar
Procedia PDF Downloads 2232335 Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF
Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda
Abstract:
Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.Keywords: powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity
Procedia PDF Downloads 4912334 Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites
Authors: Vimanyu Chadha, Ranganath M. Singari
Abstract:
Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates.Keywords: analysis of variance, delamination, design optimization, drilling, glass fiber reinforced plastic composites, Taguchi method
Procedia PDF Downloads 2532333 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes
Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi
Abstract:
Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation
Procedia PDF Downloads 1492332 Oil and Proteins of Sardine (Sardina Pilchardus) Compared with Casein or Mixture of Vegetable Oils Improves Dyslipidemia and Reduces Inflammation and Oxidative Stress in Hypercholesterolemic and Obese Rats
Authors: Khelladi Hadj Mostefa, Krouf Djamil, Taleb-Dida Nawel
Abstract:
Background: Obesity results from a prolonged imbalance between energy intake and energy expenditure, as depending on basal metabolic rate. Oils and proteins from sea have important therapeutic (such as obesity and hypercholesterolemia) and antioxidant effects. Sardine are a widely consumed fish in the Mediterranean region. Its consumption provides humans with various nutrients such as oils (rich in omega 3 plyunsaturated fatty acids)) and proteins. Methods: Sardine oil (SO) and sardine proteins (SP) were extracted and purified. Mixture of vegetable oils (olive-walnut-sunflower) were prepared from oils produced in Algeria. Eighteen wistar rats are fed a high fat diet enriched with 1% cholesterol for 30 days to induce obesity and hypercholesterolemia. The rats are divided into 3 groups. The first group consumes 20% sardine protein combined with 5% sardine oil (38% SFA (saturated fatty acids), 31% MIFA (monounsaturated fatty acids) and 31% PIFA (polyunsaturated fatty acids)) (SPso). The second group consumes 20% sardine protein combined with 5% of a mixture of vegetable oils (VO) containing 13% SFA, 58% MIFA and 29% PIFA (PSvo), and the third group consuming 20% casein combined with 5% of the mixture of vegetable oils and serves as a semi-synthetic reference (CASvo). Body weights and glycaemia are measured weekly After 28 days of experimentation, the rats are sacrificed, the blood and the liver removed. Serum assays of total cholesterol (TC) and triglycerides (TG) were performed by enzymatic colorimetric methods. Evaluation of lipid peroxidation was performed by assaying thiobarbituric acid reactive species (TBARS) and hydroperoxides values. The protein oxidation was performed by assaying carbonyl derivatives values. Finally, evaluation of antioxidant defense is made by measuring the activity of antioxidant enzymes, the superoxide dismutase (SOD) and the catalase (CAT).Results: After 28 days, the body weight (BW) of the rats increased significantly in SPso and SPvo groups compared to CAS group, by +11% and 7%, respectively. Cholesterolemia (TC) increased significantly in the SPso and SPvo groups compared to the CAS group (P<0.01), while triglyceridemia (TG) decreased significantly in the SPso group compared to SPvo and CAS groups (P<0.01). Albumin (marker of inflammation) increased in the PSs group compared to SPvo and CAS groups by +35% and +13%, respectively. The serum TBARS levels are -40% lower in SPso group compared to SPvo group, and they are -80% and -76% lower in SPso compared to SPvo and CAS groups, respectively. The level of carbonyls derivatives in the serum and liver are significantly reduced in the SPso group compared to the SPvo and CAS groups. Superoxide dismutase (SOD) activity decreased in liver of SPso group compared to SPvo group (P<0.01). While that of CAT is increased in liver tissue of SPso group compared to SPvo group (P<0.01). Conclusion: Sardine oil combined with sardine protein has a hypotriglyceridemic effect, reduces body weight, attenuates inflammation and seems to protect against lipid peroxidation and protein oxidation and increases antioxidant defense in hypercholesterolemic and obese rats. This could be in favor of a protective effect against obesity and cardiovascular diseases.Keywords: rat, obesity, hypercholesterolemia, sardine protein, sardine oil, vegetable oils mixture, lipid peroxidation, protein oxidation, antioxidant defense
Procedia PDF Downloads 642331 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India
Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi
Abstract:
French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.Keywords: earliness, pod, protected environment, quality, yield
Procedia PDF Downloads 1042330 Possible Mechanism of DM2 Development in OSA Patients Mediated via Rev-Erb-Alpha and NPAS2 Proteins
Authors: Filip Franciszek Karuga, Szymon Turkiewicz, Marta Ditmer, Marcin Sochal, Piotr Białasiewicz, Agata Gabryelska
Abstract:
Circadian rhythm, an internal coordinator of physiological processes is composed of a set of semi-autonomous clocks. Clocks are regulated through the expression of circadian clock genes which form feedback loops, creating an oscillator. The primary loop consists of activators: CLOCK, BMAL1 and repressors: CRY, PER. CLOCK can be substituted by the Neuronal PAS Domain Protein 2 (NPAS2). Orphan nuclear receptor (REV-ERB-α) is a component of the secondary major loop, modulating the expression of BMAL1. Circadian clocks might be disrupted by the obstructive sleep apnea (OSA), which has also been associated with type II diabetes mellitus (DM2). Interestingly, studies suggest that dysregulation of NPAS2 and REV-ERB-α might contribute to the pathophysiology of DM2 as well. The goal of our study was to examine the role of NPAS2 and REV-ERB-α in DM2 in OSA patients. After examination of the clinical data, all participants underwent polysomnography (PSG) to assess their apnea-hypopnea index (AHI). Based on the acquired data participants were assigned to one of 3 groups: OSA (AHI>30, no DM2; n=17 for NPAS2 and 34 for REV-ERB-α), DM2 (AHI>30 + DM2; n=7 for NPAS2 and 15 for REV-ERB-α) and control group (AHI<5, no DM2; n=16 for NPAS2 and 31 for REV-ERB-α). ELISA immunoassay was performed to assess the serum protein level of REV-ERB-α and NPAS2. The only statistically significant difference between groups was observed in NPAS2 protein level (p=0.037). Post-hoc analysis showed significant differences between the OSA and the control group (p=0.017). AHI and NPAS2 level was significantly correlated (r=-0.478, p=0.002) in all groups. A significant correlation was observed between the REV-ERB-α level and sleep efficiency (r=0.617, p=0.005) as well as sleep maintenance efficiency (r=0.645, p=0.003) in the OSA group. We conclude, that NPAS2 is associated with OSA severity and might contribute to metabolic sequelae of this disease. REV-ERB-α on the other hand can influence sleep continuity and efficiency.Keywords: OSA, diabetes mellitus, endocrinology, chronobiology
Procedia PDF Downloads 1542329 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics
Authors: Weikang Gong, Chunhua Li
Abstract:
Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure
Procedia PDF Downloads 1202328 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii
Authors: Dake Xiong, Ben Hankamer, Ian Ross
Abstract:
The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase
Procedia PDF Downloads 2602327 Utilization of Silk Waste as Fishmeal Replacement: Growth Performance of Cyprinus carpio Juveniles Fed with Bombyx mori Pupae
Authors: Goksen Capar, Levent Dogankaya
Abstract:
According to the circular economy model, resource productivity should be maximized and wastes should be reduced. Since earth’s natural resources are continuously depleted, resource recovery has gained great interest in recent years. As part of our research study on the recovery and reuse of silk wastes, this paper focuses on the utilization of silkworm pupae as fishmeal replacement, which would replace the original fishmeal raw material, namely the fish itself. This, in turn, would contribute to sustainable management of wild fish resources. Silk fibre is secreted by the silkworm Bombyx mori in order to construct a 'room' for itself during its transformation process from pupae to an adult moth. When the cocoons are boiled in hot water, silk fibre becomes loose and the silk yarn is produced by combining thin silk fibres. The remaining wastes are 1) sericin protein, which is dissolved in water, 2) remaining part of cocoon, including the dead body of B. mori pupae. In this study, an eight weeks trial was carried out to determine the growth performance of common carp juveniles fed with waste silkworm pupae meal (SWPM) as a replacement for fishmeal (FM). Four isonitrogenous diets (40% CP) were prepared replacing 0%, 33%, 50%, and 100% of the dietary FM with non-defatted silkworm pupae meal as a dietary protein source for experiments in C. carpio. Triplicate groups comprising of 20 fish (0.92±0.29 g) were fed twice/day with one of the four diets. Over a period of 8 weeks, results showed that the diet containing 50% of its protein from SWPM had significantly higher (p ≤ 0.05) growth rates in all groups. The increasing levels of SWPM were resulted in a decrease in growth performance and significantly lower growth (p ≤ 0.05) was observed with diets having 100% SWPM. The study demonstrates that it is practical to replace 50% of the FM protein with SWPM with a significantly better utilization of the diet but higher SWPM levels are not recommended for juvenile carp. Further experiments are under study to have more detailed results on the possible effects of this alternative diet on the growth performance of juvenile carp.Keywords: Bombyx mori, Cyprinus carpio, fish meal, silk, waste pupae
Procedia PDF Downloads 1582326 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol
Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee
Abstract:
In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.Keywords: apoptosis, cancer, G1 arrest, panaxydol
Procedia PDF Downloads 3202325 Clay Hydrogel Nanocomposite for Controlled Small Molecule Release
Authors: Xiaolin Li, Terence Turney, John Forsythe, Bryce Feltis, Paul Wright, Vinh Truong, Will Gates
Abstract:
Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications.Keywords: hydrogel, nanocomposite, small molecule, wound healing
Procedia PDF Downloads 2682324 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method
Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand
Abstract:
Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir
Procedia PDF Downloads 862323 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example
Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang
Abstract:
Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.Keywords: cancer, visualization, database, functional annotation
Procedia PDF Downloads 6152322 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks
Authors: Anna Stepien
Abstract:
The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.Keywords: bricks, fiber, glass, microstructure
Procedia PDF Downloads 3462321 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂
Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek
Abstract:
Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂
Procedia PDF Downloads 1742320 Investigation of Self-Assembling of Maghemite Nanoparticles into Chain–Like Structures Using Birefringence Measurements
Authors: C. R. Stein; K. Skeff Neto, K. L. C. Miranda, P. P. C. Sartoratto, M. E. Xavier, Z. G. M. Lacava, S. M. De Freita, P. C. Morais
Abstract:
In this study, static magnetic birefringence (SMB) and transmission electron microscopy (TEM) were used to investigate the self-assembling of maghemite nanoparticles suspended as biocompatible magnetic fluid (BMF) while incubated or not with the Black Eyed–Pea Trypsin Chymotripsin Inhibitor–BTCI protein. The stock samples herein studied are dextran coated maghemite nanoparticles (average core diameter of 7.1 nm, diameter dispersion of 0.26, and containing 4.6×1016 particle/mL) and the dextran coated maghemite nanoparticles associated with the BTCI protein. Several samples were prepared by diluting the stock samples with deionized water while following their colloidal stability. The diluted samples were investigated using SMB measurements to assess the average sizes of the self-assembled and suspended mesoscopic structures whereas the TEM micrographs provide the morphology of the as-suspended units. The SMB data were analyzed using a model that includes the particle-particle interaction within the mean field model picture.Keywords: biocompatible magnetic fluid, maghemite nanoparticles, self-assembling
Procedia PDF Downloads 4782319 Contribution of NLRP3 Inflammasome to the Protective Effect of 5,14-HEDGE, A 20-HETE Mimetic, against LPS-Induced Septic Shock in Rats
Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat, Mahesh P. Paudyal, John R. Falck, Kafait U. Malik
Abstract:
We hypothesized that 20-hydroxyeicosatetraenoic acid (20-HETE) mimetics such as N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE) may be beneficial for preventing mortality due to inflammation induced by lipopolysaccharide (LPS). This study aims to assess the effect of 5,14-HEDGE on the LPS-induced changes in nucleotide binding domain and leucine-rich repeat protein 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)/pro-caspase-1 inflammasome. Rats were injected with saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. 5,14-HEDGE (30 mg/kg) was administered to rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and kidney, heart, thoracic aorta, and superior mesenteric artery were isolated for measurement of caspase-1/11 p20, NLRP3, ASC, and β-actin proteins as well as interleukin-1β (IL-1β) levels. Blood pressure decreased by 33 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. In the LPS-treated rats, tissue protein expression of caspase-1/11 p20, NLRP3, and ASC in addition to IL-1β levels were increased. 5,14-HEDGE prevented the LPS-induced changes. Our findings suggest that inhibition of renal, cardiac, and vascular formation/activity of NLRP3/ASC/pro-caspase-1 inflammasome involved in the protective effect of 5,14-HEDGE on LPS-induced septic shock in rats. This work was financially supported by the Mersin University (2015-AP3-1343) and USPHS NIH (PO1 HL034300).Keywords: 5, 14-HEDGE, lipopolysaccharide, NLRP3, inflammasome, septic shock
Procedia PDF Downloads 2932318 A Deletion in Duchenne Muscular Dystrophy Gene Found Through Whole Exome Sequencing in Iran
Authors: Negin Parsamanesh, Saman Ameri-Mahabadi, Ali Nikfar, Mojdeh Mansouri, Hossein Chiti, Gita Fatemi Abhari
Abstract:
Duchenne muscular dystrophy (DMD) is a severe progressive X-linked neuromuscular illness that affects movement through mutations in dystrophin gene. The mutation leads to insufficient, lack of or dysfunction of dystrophin. The cause of DMD was determined in an Iranian family. Exome sequencing was carried out along with a complete physical examination of the family. In silico methods were applied to find the alteration in the protein structure. The homozygous variant in DMD gene (NM-004006.2) was defined as c.2732-2733delTT (p.Phe911CysfsX8) in exon 21. In addition, phylogenetic conservation study of the human dystrophin protein sequence revealed that phenylalanine 911 is one of the evolutionarily conserved amino acids. In conclusion, our study indicated a new deletion in the DMD gene in the affected family. This deletion with an X-linked inheritance pattern is new in Iran. These findings could facilitate genetic counseling for this family and other patients in the future.Keywords: duchenne muscular dystrophy, whole exome sequencing, iran, metabolic syndrome
Procedia PDF Downloads 692317 Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato
Authors: Nurulhikma Md Isa, Intan Elya Suka, Nur Farhana Roslan, Chew Bee Lynn
Abstract:
The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes.Keywords: ERFs, PRT6, tomato, ubiquitin
Procedia PDF Downloads 238