Search results for: iterative methods
14372 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry
Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati
Abstract:
One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.Keywords: nanofabrication, cement replacement materials, activation, concrete
Procedia PDF Downloads 61314371 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector
Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim
Abstract:
Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.Keywords: DNA, gene delivery, nanoinjector, nanowire
Procedia PDF Downloads 27514370 A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks
Authors: Hanefi Cinar, Musa Cibuk, Ismail Erturk, Fikri Aggun, Munip Geylani
Abstract:
Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication.Keywords: MWSN, delay, hybrid MAC, TDMA, FDM, OFDMA
Procedia PDF Downloads 48014369 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study
Authors: Mahmoud I. Syam, Osama K. El-Hafy
Abstract:
With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.Keywords: learning, motivating, student, teacher, testing hypotheses
Procedia PDF Downloads 47314368 A Review on Application of Phase Change Materials in Textiles Finishing
Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi
Abstract:
Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation
Procedia PDF Downloads 38814367 Architectural Robotics in Micro Living Spaces: An Approach to Enhancing Wellbeing
Authors: Timothy Antoniuk
Abstract:
This paper will demonstrate why the most successful and livable cities in the future will require multi-disciplinary designers to develop a deep understanding of peoples’ changing lifestyles, and why new generations of deeply integrated products, services and experiences need to be created. Disseminating research from the UNEP Creative Economy Reports and through a variety of other consumption and economic-based statistics, a compelling argument will be made that it is peoples’ living spaces that offer the easiest and most significant affordances for inducing positive changes to their wellbeing, and to a city’s economic and environmental prosperity. This idea, that leveraging happiness, wellbeing and prosperity through creating new concepts and typologies of ‘home’, puts people and their needs, wants, desires, aspirations and lifestyles at the beginning of the design process, not at the end, as so often occurs with current-day multi-unit housing construction. As an important part of the creative-reflective and statistical comparisons that are necessary for this on-going body of research and practice, Professor Antoniuk created the Micro Habitation Lab (mHabLab) in 2016. By focusing on testing the functional and economic feasibility of activating small spaces with different types of architectural robotics, a variety of movable, expandable and interactive objects have been hybridized and integrated into the architectural structure of the Lab. Allowing the team to test new ideas continually and accumulate thousands of points of feedback from everyday consumers, a series of on-going open houses is allowing the public-at-large to see, physically engage with, and give feedback on the items they find most and least valuable. This iterative approach of testing has exposed two key findings: Firstly, that there is a clear opportunity to improve the macro and micro functionality of small living spaces; and secondly, that allowing people to physically alter smaller elements of their living space lessens feelings of frustration and enhances feelings of pride and a deeper perception of “home”. Equally interesting to these findings is a grouping of new research questions that are being exposed which relate to: The duality of space; how people can be in two living spaces at one time; and how small living spaces is moving the Extended Home into the public realm.Keywords: architectural robotics, extended home, interactivity, micro living spaces
Procedia PDF Downloads 17214366 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 4514365 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 11114364 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage
Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais
Abstract:
The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless
Procedia PDF Downloads 29514363 Comparison of Different Methods of Microorganism's Identification from a Copper Mining in Pará, Brazil
Authors: Louise H. Gracioso, Marcela P.G. Baltazar, Ingrid R. Avanzi, Bruno Karolski, Luciana J. Gimenes, Claudio O. Nascimento, Elen A. Perpetuo
Abstract:
Introduction: Higher copper concentrations promote a selection pressure on organisms such as plants, fungi and bacteria, which allows surviving only the resistant organisms to the contaminated site. This selective pressure keeps only the organisms most resistant to a specific condition and subsequently increases their bioremediation potential. Despite the bacteria importance for biosphere maintenance, it is estimated that only a small fraction living microbial species has been described and characterized. Due to the molecular biology development, tools based on analysis 16S ribosomal RNA or another specific gene are making a new scenario for the characterization studies and identification of microorganisms in the environment. News identification of microorganisms methods have also emerged like Biotyper (MALDI / TOF), this method mass spectrometry is subject to the recognition of spectroscopic patterns of conserved and features proteins for different microbial species. In view of this, this study aimed to isolate bacteria resistant to copper present in a Copper Processing Area (Sossego Mine, Canaan, PA) and identifies them in two different methods: Recent (spectrometry mass) and conventional. This work aimed to use them for a future bioremediation of this Mining. Material and Methods: Samples were collected at fifteen different sites of five periods of times. Microorganisms were isolated from mining wastes by culture enrichment technique; this procedure was repeated 4 times. The isolates were inoculated into MJS medium containing different concentrations of chloride copper (1mM, 2.5mM, 5mM, 7.5mM and 10 mM) and incubated in plates for 72 h at 28 ºC. These isolates were subjected to mass spectrometry identification methods (Biotyper – MALDI/TOF) and 16S gene sequencing. Results: A total of 105 strains were isolated in this area, bacterial identification by mass spectrometry method (MALDI/TOF) achieved 74% agreement with the conventional identification method (16S), 31% have been unsuccessful in MALDI-TOF and 2% did not obtain identification sequence the 16S. These results show that Biotyper can be a very useful tool in the identification of bacteria isolated from environmental samples, since it has a better value for money (cheap and simple sample preparation and MALDI plates are reusable). Furthermore, this technique is more rentable because it saves time and has a high performance (the mass spectra are compared to the database and it takes less than 2 minutes per sample).Keywords: copper mining area, bioremediation, microorganisms, identification, MALDI/TOF, RNA 16S
Procedia PDF Downloads 37814362 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: robust control, stabilization method, underwater robot, parameter uncertainty
Procedia PDF Downloads 16014361 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 29214360 The Effects of Various Curing Compounds on the Mechanical Characteristics of Roller Compacted Concrete Pavements (RCCP)
Authors: Azadeh Askarinejad, Parmida Hayati, Parham Hayati, Reza Parchami
Abstract:
Curing is a very important factor in the ultimate strength and durability of roller compacted concrete pavements (RCCP). Curing involves keeping the concrete is saturated or close to saturation point. Since maintaining concrete moisture has a significant impact on its mechanical properties, permeability and durability, curing is important. The most common procedure for curing of roller compacted concrete is using a white pigmented curing compound. This method is effective, economical and fast. In the present study, different curing compounds were applied on concrete specimens and the results of their effects on the mechanical properties were compared with each other and usual methods of curing in order to select appropriate materials and methods of curing for RCCP construction.Keywords: curing compounds, roller compacted concrete pavements, mechanical properties, durability
Procedia PDF Downloads 62214359 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 9414358 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations
Authors: Reza Mohammadi, Mahdieh Sahebi
Abstract:
We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis
Procedia PDF Downloads 36614357 Systematic Examination of Methods Supporting the Social Innovation Process
Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga
Abstract:
Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.Keywords: factors of social innovation, methodological combination, social innovation process, supporting decision-making
Procedia PDF Downloads 15514356 Comparative Evaluation of Pharmacologically Guided Approaches (PGA) to Determine Maximum Recommended Starting Dose (MRSD) of Monoclonal Antibodies for First Clinical Trial
Authors: Ibraheem Husain, Abul Kalam Najmi, Karishma Chester
Abstract:
First-in-human (FIH) studies are a critical step in clinical development of any molecule that has shown therapeutic promise in preclinical evaluations, since preclinical research and safety studies into clinical development is a crucial step for successful development of monoclonal antibodies for guidance in pharmaceutical industry for the treatment of human diseases. Therefore, comparison between USFDA and nine pharmacologically guided approaches (PGA) (simple allometry, maximum life span potential, brain weight, rule of exponent (ROE), two species methods and one species methods) were made to determine maximum recommended starting dose (MRSD) for first in human clinical trials using four drugs namely Denosumab, Bevacizumab, Anakinra and Omalizumab. In our study, the predicted pharmacokinetic (pk) parameters and the estimated first-in-human dose of antibodies were compared with the observed human values. The study indicated that the clearance and volume of distribution of antibodies can be predicted with reasonable accuracy in human and a good estimate of first human dose can be obtained from the predicted human clearance and volume of distribution. A pictorial method evaluation chart was also developed based on fold errors for simultaneous evaluation of various methods.Keywords: clinical pharmacology (CPH), clinical research (CRE), clinical trials (CTR), maximum recommended starting dose (MRSD), clearance and volume of distribution
Procedia PDF Downloads 37414355 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations
Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger
Abstract:
Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java
Procedia PDF Downloads 33614354 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions
Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju
Abstract:
Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.Keywords: distributed generation, electrical distribution systems, fault resistance
Procedia PDF Downloads 51514353 A Gradient Orientation Based Efficient Linear Interpolation Method
Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar
Abstract:
This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing
Procedia PDF Downloads 26014352 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles
Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli
Abstract:
The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up
Procedia PDF Downloads 49914351 Comparison of Receiver Operating Characteristic Curve Smoothing Methods
Authors: D. Sigirli
Abstract:
The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve
Procedia PDF Downloads 15214350 The Economic Limitations of Defining Data Ownership Rights
Authors: Kacper Tomasz Kröber-Mulawa
Abstract:
This paper will address the topic of data ownership from an economic perspective, and examples of economic limitations of data property rights will be provided, which have been identified using methods and approaches of economic analysis of law. To properly build a background for the economic focus, in the beginning a short perspective of data and data ownership in the EU’s legal system will be provided. It will include a short introduction to its political and social importance and highlight relevant viewpoints. This will stress the importance of a Single Market for data but also far-reaching regulations of data governance and privacy (including the distinction of personal and non-personal data, data held by public bodies and private businesses). The main discussion of this paper will build upon the briefly referred to legal basis as well as methods and approaches of economic analysis of law.Keywords: antitrust, data, data ownership, digital economy, property rights
Procedia PDF Downloads 8214349 Cultural and Historical Roots of Plagiarism in Georgia
Authors: Lali Khurtsia, Vano Tsertsvadze
Abstract:
The purpose of the study was to find out incentives and expectations, methods and ways, which are influential to students during working with their thesis. Research findings shows that the use of plagiarism has cultural links deep in the history - on the one hand, the tradition of sharing knowledge in the oral manner, with its different interpretations, and on the other hand the lack of fair and honest methods in the academic process. Research results allow us to determine general ideas about preventive policy to reduce the use of plagiarism. We conducted surveys in three different groups – we interviewed so-called diploma writers, students on bachelors and masters level and the focus group of lecturers. We found that the problem with plagiarism in Georgia has cultural-mental character. We think that nearest years’ main task should be breaking of barriers existed between lecturers and students and acknowledgement of honest principals of study process among students and pupils.Keywords: education, Georgia, plagiarism, study process, school, university
Procedia PDF Downloads 22914348 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life
Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi
Abstract:
Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model
Procedia PDF Downloads 45714347 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 27214346 The Differences in Skill Performance Between Online and Conventional Learning Among Nursing Students
Authors: Nurul Nadrah
Abstract:
As a result of the COVID-19 pandemic, a movement control order was implemented, leading to the adoption of online learning as a substitute for conventional classroom instruction. Thus, this study aims to determine the differences in skill performance between online learning and conventional methods among nursing students. We employed a quasi-experimental design with purposive sampling, involving a total of 59 nursing students, and used online learning as the intervention. As a result, the study found there was a significant difference in student skill performance between online learning and conventional methods. As a conclusion, in times of hardship, it is necessary to implement alternative pedagogical approaches, especially in critical fields like nursing, to ensure the uninterrupted progression of educational programs. This study suggests that online learning can be effectively employed as a means of imparting knowledge to nursing students during their training.Keywords: nursing education, online learning, skill performance, conventional learning method
Procedia PDF Downloads 4714345 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 6614344 Modelling and Simulation of Biomass Pyrolysis
Authors: P. Ahuja, K. S. S. Sai Krishna
Abstract:
There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat.Keywords: biomass, fluidisation, pyrolysis, simulation
Procedia PDF Downloads 34214343 Analysis and Forecasting of Bitcoin Price Using Exogenous Data
Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka
Abstract:
Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance
Procedia PDF Downloads 355