Search results for: iterative algorithms
1201 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring
Authors: Goran Begović
Abstract:
In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.Keywords: data science, ECG, heart rate, holter monitor, LED sensors
Procedia PDF Downloads 1281200 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 681199 Brand Content Optimization: A Major Challenge for Sellers on Marketplaces
Authors: Richardson Ciguene, Bertrand Marron, Nicolas Habert
Abstract:
Today, more and more consumers are purchasing their products and services online. At the same time, the penetration rate of very small and medium-sized businesses on marketplaces continues to increase, which has the direct impact of intensifying competition between sellers. Thus, only the best-optimized deals are ranked well by algorithms and are visible to consumers. However, it is almost impossible to know all the Brand Content rules and criteria established by marketplaces, which is essential to optimizing their product sheets, especially since these rules change constantly. In this paper, we propose to detail this question of Brand Content optimization by taking into account the case of Amazon in order to capture the scientific dimension behind such a subject. In a second step, we will present the genesis of our research project, DEEPERFECT, which aims to set up original methods and effective tools in order to help sellers present on marketplaces in the optimization of their branded content.Keywords: e-commerce, scoring, marketplace, Amazon, brand content, product sheets
Procedia PDF Downloads 1241198 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1031197 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 4031196 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology
Authors: Amit Kamra, V. K. Jain, Pragya
Abstract:
Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.Keywords: enhancement, mammography, multi-scale, mathematical morphology
Procedia PDF Downloads 4271195 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding
Authors: Seongsoo Lee
Abstract:
Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization
Procedia PDF Downloads 3651194 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 2941193 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm
Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh
Abstract:
this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.Keywords: genetic algorithm, information retrieval, optimal queries, crossover
Procedia PDF Downloads 2941192 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms
Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili
Abstract:
In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm
Procedia PDF Downloads 6351191 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms
Authors: Saeid Jalilzadeh
Abstract:
PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.Keywords: controller, GA, optimization, PID, PSO
Procedia PDF Downloads 5441190 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 1511189 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.Keywords: cognition, world music, artificial intelligence, Thayer’s matrix
Procedia PDF Downloads 811188 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 431187 Classification Rule Discovery by Using Parallel Ant Colony Optimization
Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan
Abstract:
Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery
Procedia PDF Downloads 2961186 The Utilization of Big Data in Knowledge Management Creation
Authors: Daniel Brian Thompson, Subarmaniam Kannan
Abstract:
The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.Keywords: big data, knowledge management, data driven, knowledge creation
Procedia PDF Downloads 1171185 Advancements in Electronic Sensor Technologies for Tea Quality Evaluation
Authors: Raana Babadi Fathipour
Abstract:
Tea, second only to water in global consumption rates, holds a significant place as the beverage of choice for many around the world. The process of fermenting tea leaves plays a crucial role in determining its ultimate quality, traditionally assessed through meticulous observation by tea tasters and laboratory analysis. However, advancements in technology have paved the way for innovative electronic sensing platforms like the electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye). These cutting-edge tools, coupled with sophisticated data processing algorithms, not only expedite the assessment of tea's sensory qualities based on consumer preferences but also establish new benchmarks for this esteemed bioactive product to meet burgeoning market demands worldwide. By harnessing intricate data sets derived from electronic signals and deploying multivariate statistical techniques, these technological marvels can enhance accuracy in predicting and distinguishing tea quality with unparalleled precision. In this contemporary exploration, a comprehensive overview is provided of the most recent breakthroughs and viable solutions aimed at addressing forthcoming challenges in the realm of tea analysis. Utilizing bio-mimicking Electronic Sensory Perception systems (ESPs), researchers have developed innovative technologies that enable precise and instantaneous evaluation of the sensory-chemical attributes inherent in tea and its derivatives. These sophisticated sensing mechanisms are adept at deciphering key elements such as aroma, taste, and color profiles, transitioning valuable data into intricate mathematical algorithms for classification purposes. Through their adept capabilities, these cutting-edge devices exhibit remarkable proficiency in discerning various teas with respect to their distinct pricing structures, geographic origins, harvest epochs, fermentation processes, storage durations, quality classifications, and potential adulteration levels. While voltammetric and fluorescent sensor arrays have emerged as promising tools for constructing electronic tongue systems proficient in scrutinizing tea compositions, potentiometric electrodes continue to serve as reliable instruments for meticulously monitoring taste dynamics within different tea varieties. By implementing a feature-level fusion strategy within predictive models, marked enhancements can be achieved regarding efficiency and accuracy levels. Moreover, by establishing intrinsic linkages through pattern recognition methodologies between sensory traits and biochemical makeup found within tea samples, further strides are made toward enhancing our understanding of this venerable beverage's complex nature.Keywords: classifier system, tea, polyphenol, sensor, taste sensor
Procedia PDF Downloads 21184 Improving Usability of e-Government for the Elderly
Authors: Tamas Molnar
Abstract:
Electronic government systems are currently in the same development stage as e-commerce applications were about in the late 1990s. Wide adoption by the majority of population is near, as such services are not only more and more desired by the users, but also strongly advocated and pushed by the state, as a means to increase effectiveness and cut expenses at the same time. Diffusion is however hampered by the low motivation caused by usability issues which will cause more and more frustration as the general population ages. Usability centred design is essential when creating such services. Elderly users, who have statistically the least experience, have the most problems, and therefore reject unusable systems first. The goal of our research was to find a way to map the needs of the elderly and create guidelines for the design of electronic government systems which are usable for the whole population. The first phase of our research, started mid-2009, was centred on the idea to gather information about the needs of the target group, in both Germany and Hungary with over 70 participants. This was done with the help of scenarios, interviews and questionnaires. The supplied data enabled to choose an eGovernment system for tests on the target group. Tests conducted in Germany and Hungary were based on the design and functions of the German electronic ID card, in the native languages. Scenarios mirroring common, every day transactions requiring an identification procedure were used. The obtained results allowed us to develop a generalised solution, the IGUAN guideline. This guideline makes a standardised approach to the usability improvement process possible. It contains the special requirements of elderly users, and a catalogue of criteria, which helps to develop an application in line with the set requirements. The third phase of our research was used a proof of concept for the IGUAN. The guideline was evaluated and tested with an iterative prototyping. The successful completion of this phase indicates that the IGUAN can be used to measurably increase the acceptance of e-government systems by elderly users. We could therefore demonstrate that improvements in the interface make e-government application possible which are perceived useful and easy to use by elderly users. These improvements will measurably increase the user motivation and experience. This can however only be achieved with a structured design process, and requires a framework which takes the requirements of the elderly users into account.Keywords: e-Government, usability, acceptance, guidelines
Procedia PDF Downloads 5441183 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4821182 An Algorithm for Removal of Noise from X-Ray Images
Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See
Abstract:
In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF
Procedia PDF Downloads 3831181 The Fidget Widget Toolkit: A Positive Intervention Designed and Evaluated to Enhance Wellbeing for People in the Later Stage of Dementia
Authors: Jane E. Souyave, Judith Bower
Abstract:
This study is an ongoing collaborative project between the University of Central Lancashire and the Alzheimer’s Society to design and test the idea of using interactive tools for a person living with dementia and their carers. It is hoped that the tools will fulfill the possible needs of engagement and interaction as dementia progresses, therefore enhancing wellbeing and improving quality of life for the person with dementia and their carers. The project was informed by Kitwood’s five psychological needs for producing wellbeing and explored evidence that fidgeting is often seen as a form of agitation and a negative symptom of dementia. Although therapy for agitation may be well established, there is a lack of appropriate items aimed at people in the later stage of dementia, that are not childlike or medical in their aesthetic. Individuals may fidget in a particular way and the tools in the Fidget Widget Toolkit have been designed to encourage repetitive movements of the hand, specifically to address the abilities of people with relatively advanced dementia. As an intervention, these tools provided a new approach that had not been tested in dementia care. Prototypes were created through an iterative design process and tested with a number of people with dementia and their carers, using quantitative and qualitative methods. Dementia Care Mapping was used to evaluate the impact of the intervention in group settings. Cohen Mansfield’s Agitation Inventory was used to record the daily use and interest of the intervention for people in their usual place of residence. The results informed the design of a new set of devices to promote safe, stigma free fidgeting as a positive experience, meaningful activity and enhance wellbeing for people in the later stage of dementia. The outcomes addressed the needs of individuals by reducing agitation and restlessness through helping them to connect, engage and act independently, providing the means of doing something for themselves that they were able to do. The next stage will be to explore the commercial feasibility of the Fidget Widget Toolkit so that it can be introduced as good practice and innovation in dementia care. It could be used by care homes, with carers and their families to support wellbeing and lead the way in providing some positive experiences and person-centred approaches that are lacking in the later stage of dementia.Keywords: dementia, design, fidgeting, healthcare, positive moments, quality of life, wellbeing
Procedia PDF Downloads 2741180 Intelligent Adaptive Learning in a Changing Environment
Authors: G. Valentis, Q. Berthelot
Abstract:
Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment
Procedia PDF Downloads 4241179 Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq
Abstract:
Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 4001178 Cardiovascular Disease Prediction Using Machine Learning Approaches
Abstract:
It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree
Procedia PDF Downloads 1541177 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 5551176 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony
Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim
Abstract:
This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting
Procedia PDF Downloads 3301175 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 4651174 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1231173 Using Indigenous Knowledge Systems in Teaching Early Literacy: A Case Study of Zambian Public Preschools
Authors: Ronald L. Kaunda
Abstract:
The education system in Zambia still bears scars of colonialism in the area of policy, curriculum and implementation. This historical context resulted in the failure by the Government of the Republic of Zambia to achieve literacy goals expected among school going children. Specifically, research shows that the use of English for initial literacy and Western based teaching methods to engage learners in literacy activities at lower levels of education including preschool has exacerbated this situation. In 2014, the Government of the Republic of Zambia implemented a new curriculum that, among others things, required preschool teachers to use local and cultural materials and familiar languages for early literacy teaching from preschool to grade 4. This paper presents findings from a study that sought to establish ways in which preschool teachers use Zambian Indigenous knowledge systems and Indigenous teaching strategies to support literacy development among preschool children. The study used Indigenous research methodology for data collection and iterative feature of Constructivist Grounded Theory (CGT) in the data collection process and analysis. This study established that, as agents of education, preschool teachers represented community adult educators because of some roles which they played beyond their academic mandate. The study further found that classrooms as venues of learning were equipped with learning corners reflecting Indigenous literacy materials and Indigenous ways of learning. Additionally, the study found that learners were more responsive to literacy lessons because of the use of familiar languages and local contextualized environments that supported their own cultural ways of learning. The study recommended that if the education system in Zambia is to be fully inclusive of Indigenous knowledge systems and cultural ways of learning, the education policy and curriculum should include conscious steps on how this should be implemented at the classroom level. The study further recommended that more diverse local literacy materials and teaching aids should be produced for use in the classroom.Keywords: agents of learning, early literacy, indigenous knowledge systems, venues of education
Procedia PDF Downloads 1691172 Using the Cluster Computing to Improve the Computational Speed of the Modular Exponentiation in RSA Cryptography System
Authors: Te-Jen Chang, Ping-Sheng Huang, Shan-Ten Cheng, Chih-Lin Lin, I-Hui Pan, Tsung- Hsien Lin
Abstract:
RSA system is a great contribution for the encryption and the decryption. It is based on the modular exponentiation. We call this system as “a large of numbers for calculation”. The operation of a large of numbers is a very heavy burden for CPU. For increasing the computational speed, in addition to improve these algorithms, such as the binary method, the sliding window method, the addition chain method, and so on, the cluster computer can be used to advance computational speed. The cluster system is composed of the computers which are installed the MPICH2 in laboratory. The parallel procedures of the modular exponentiation can be processed by combining the sliding window method with the addition chain method. It will significantly reduce the computational time of the modular exponentiation whose digits are more than 512 bits and even more than 1024 bits.Keywords: cluster system, modular exponentiation, sliding window, addition chain
Procedia PDF Downloads 524