Search results for: green infrastructure network
7204 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss
Procedia PDF Downloads 1997203 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1407202 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 2947201 Implementation of Metabolomics in Conjunction with Chemometrics for the Dentification of the Differential Chemical Markers of Different Grades of Sri Lankan White, Green and Black Tea: Camellia Sinenesis L.
Authors: Dina A. Selim, Eman Shawky, Rasha M. Abu El-Khair
Abstract:
In the current study, UPLC-MS/MS combined to chemometrics were applied on seven Sri Lankan tea grades; Orange Pekoe, Flowery Pekoe, Broken Orange Pekoe Fannings, Broken Orange Pekoe black tea, green tea, silver tips and golden tips white tea grades for their comprehensive metabolic profiling. Certain metabolites, namely, Theasensinin C and E, theaflavin and theacitrin appeared to be the main chemical markers of black tea type, catechin, epicatechin, epigallocatechin, methyl epigallocatechin were the main discriminatory markers of green tea type, while theanine, oolongotheanine and quercetin glycosides were the main chemical markers of white tea type. Theogalloflavin, epigallocatechin and flavonoid glycosides were the main down-accumulated metabolites while theaflavin gallate, and N-ethyl pyrrolidinone epicatechin were the chief up- accumulated metabolites between whole and broken black tea leave grades while puerin A and C and gallic acid was the main down- accumulated metabolites and N-ethyl pyrrolidinone epicatechin gallate was the main up-accumulated one between broken and fanning black tea grades.Keywords: tea grading, Sri Lankan tea, chemometrics, metabolomics, chemical markers
Procedia PDF Downloads 1417200 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network
Authors: Purva Joshi, Rohit Thanki, Omar Hanif
Abstract:
Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem
Procedia PDF Downloads 2067199 A Neural Network Approach to Evaluate Supplier Efficiency in a Supply Chain
Authors: Kishore K. Pochampally
Abstract:
The success of a supply chain heavily relies on the efficiency of the suppliers involved. In this paper, we propose a neural network approach to evaluate the efficiency of a supplier, which is being considered for inclusion in a supply chain, using the available linguistic (fuzzy) data of suppliers that already exist in the supply chain. The approach is carried out in three phases, as follows: In phase one, we identify criteria for evaluation of the supplier of interest. Then, in phase two, we use performance measures of already existing suppliers to construct a neural network that gives weights (importance values) of criteria identified in phase one. Finally, in phase three, we calculate the overall rating of the supplier of interest. The following are the major findings of the research conducted for this paper: (i) linguistic (fuzzy) ratings of suppliers such as 'good', 'bad', etc., can be converted (defuzzified) to numerical ratings (1 – 10 scale) using fuzzy logic so that those ratings can be used for further quantitative analysis; (ii) it is possible to construct and train a multi-level neural network in order to determine the weights of the criteria that are used to evaluate a supplier; and (iii) Borda’s rule can be used to group the weighted ratings and calculate the overall efficiency of the supplier.Keywords: fuzzy data, neural network, supplier, supply chain
Procedia PDF Downloads 1157198 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: water pipe networks, maintenance management, reliability analysis, optimum maintenance plan
Procedia PDF Downloads 1567197 Preliminary Experience in Multiple Green Health Hospital Construction
Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang
Abstract:
Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.Keywords: energy efficiency, environmental education, green hospital, sustainable development
Procedia PDF Downloads 807196 Spatio-Temporal Analysis of Land Use Change and Green Cover Index
Authors: Poonam Sharma, Ankur Srivastav
Abstract:
Cities are complex and dynamic systems that constitute a significant challenge to urban planning. The increasing size of the built-up area owing to growing population pressure and economic growth have lead to massive Landuse/Landcover change resulted in the loss of natural habitat and thus reducing the green covers in urban areas. Urban environmental quality is influenced by several aspects, including its geographical configuration, the scale, and nature of human activities occurring and environmental impacts generated. Cities have transformed into complex and dynamic systems that constitute a significant challenge to urban planning. Cities and their sustainability are often discussed together as the cities stand confronted with numerous environmental concerns as the world becoming increasingly urbanized, and the cities are situated in the mesh of global networks in multiple senses. A rapid transformed urban setting plays a crucial role to change the green area of natural habitats. To examine the pattern of urban growth and to measure the Landuse/Landcover change in Gurgoan in Haryana, India through the integration of Geospatial technique is attempted in the research paper. Satellite images are used to measure the spatiotemporal changes that have occurred in the land use and land cover resulting into a new cityscape. It has been observed from the analysis that drastically evident changes in land use has occurred with the massive rise in built up areas and the decrease in green cover and therefore causing the sustainability of the city an important area of concern. The massive increase in built-up area has influenced the localised temperatures and heat concentration. To enhance the decision-making process in urban planning, a detailed and real world depiction of these urban spaces is the need of the hour. Monitoring indicators of key processes in land use and economic development are essential for evaluating policy measures.Keywords: cityscape, geospatial techniques, green cover index, urban environmental quality, urban planning
Procedia PDF Downloads 2797195 Communication Infrastructure Required for a Driver Behaviour Monitoring System, ‘SiaMOTO’ IT Platform
Authors: Dogaru-Ulieru Valentin, Sălișteanu Ioan Corneliu, Ardeleanu Mihăiță Nicolae, Broscăreanu Ștefan, Sălișteanu Bogdan, Mihai Mihail
Abstract:
The SiaMOTO system is a communications and data processing platform for vehicle traffic. The human factor is the most important factor in the generation of this data, as the driver is the one who dictates the trajectory of the vehicle. Like any trajectory, specific parameters refer to position, speed and acceleration. Constant knowledge of these parameters allows complex analyses. Roadways allow many vehicles to travel through their confined space, and the overlapping trajectories of several vehicles increase the likelihood of collision events, known as road accidents. Any such event has causes that lead to its occurrence, so the conditions for its occurrence are known. The human factor is predominant in deciding the trajectory parameters of the vehicle on the road, so monitoring it by knowing the events reported by the DiaMOTO device over time, will generate a guide to target any potentially high-risk driving behavior and reward those who control the driving phenomenon well. In this paper, we have focused on detailing the communication infrastructure of the DiaMOTO device with the traffic data collection server, the infrastructure through which the database that will be used for complex AI/DLM analysis is built. The central element of this description is the data string in CODEC-8 format sent by the DiaMOTO device to the SiaMOTO collection server database. The data presented are specific to a functional infrastructure implemented in an experimental model stage, by installing on a number of 50 vehicles DiaMOTO unique code devices, integrating ADAS and GPS functions, through which vehicle trajectories can be monitored 24 hours a day.Keywords: DiaMOTO, Codec-8, ADAS, GPS, driver monitoring
Procedia PDF Downloads 827194 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database
Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan
Abstract:
Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database
Procedia PDF Downloads 5797193 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV
Authors: Maria Pavlova
Abstract:
In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.Keywords: camera, object recognition, OpenCV, Raspberry
Procedia PDF Downloads 2197192 Green, Smooth and Easy Electrochemical Synthesis of N-Protected Indole Derivatives
Authors: Sarah Fahad Alajmi, Tamer Ezzat Youssef
Abstract:
Here, we report a simple method for the direct conversion of 6-Nitro-1H-indole into N-substituted indoles via electrochemical dehydrogenative reaction with halogenated reagents under strongly basic conditions through N–R bond formation. The N-protected indoles have been prepared under moderate and scalable electrolytic conditions. The conduct of the reactions was performed in a simple divided cell under constant current without oxidizing reagents or transition-metal catalysts. The synthesized products have been characterized via UV/Vis spectrophotometry, 1H-NMR, and FTIR spectroscopy. A possible reaction mechanism is discussed based on the N-protective products. This methodology could be applied to the synthesis of various biologically active N-substituted indole derivatives.Keywords: green chemistry, 1H-indole, heteroaromatic, organic electrosynthesis
Procedia PDF Downloads 1637191 Green Synthesis and Characterization of Zinc and Ferrous Nanoparticles for Their Potent Therapeutic Approach
Authors: Mukesh Saran, Ashima Bagaria
Abstract:
Green nanotechnology is the most researched field in the current scenario. Herein we study the synthesis of Zinc and Ferrous nanoparticles using Moringa oleifera leaf extracts. Our protocol using established protocols heat treatment of plant extracts along with the solution of copper sulphate in the ratio of 1:1. The leaf extracts of Moringa oleifera were prepared in deionized water. Copper sulfate solution (1mM) was added to this, and the change in color of the solution was observed indicating the formation of Cu nanoparticles. The as biosynthesized Cu nanoparticles were characterized with the help of Scanning Electron Microscopy (SEM), and Fourier Transforms Infrared Spectroscopy (FTIR). It was observed that the leaf extracts of Moringa oleifera can reduce copper ions into copper nanoparticles within 8 to 10 min of reaction time. The method thus can be used for rapid and eco-friendly biosynthesis of stable copper nanoparticles. Further, we checked their antimicrobial and antioxidant potential, and it was observed that maximum antioxidant activity was observed for the particles prepared using the heating method. The maximum antibacterial activity was observed in Streptomyces grisveus particles and in Triochoderma Reesei for the maximum antifungal activity. At present, we are engaged in studying the anti-inflammatory activities of these as prepared nanoparticles.Keywords: green synthesis, antibacterial, antioxidant, antifungal, anti-inflammatory
Procedia PDF Downloads 3517190 Developing a Maturity Model of Digital Twin Application for Infrastructure Asset Management
Authors: Qingqing Feng, S. Thomas Ng, Frank J. Xu, Jiduo Xing
Abstract:
Faced with unprecedented challenges including aging assets, lack of maintenance budget, overtaxed and inefficient usage, and outcry for better service quality from the society, today’s infrastructure systems has become the main focus of many metropolises to pursue sustainable urban development and improve resilience. Digital twin, being one of the most innovative enabling technologies nowadays, may open up new ways for tackling various infrastructure asset management (IAM) problems. Digital twin application for IAM, as its name indicated, represents an evolving digital model of intended infrastructure that possesses functions including real-time monitoring; what-if events simulation; and scheduling, maintenance, and management optimization based on technologies like IoT, big data and AI. Up to now, there are already vast quantities of global initiatives of digital twin applications like 'Virtual Singapore' and 'Digital Built Britain'. With digital twin technology permeating the IAM field progressively, it is necessary to consider the maturity of the application and how those institutional or industrial digital twin application processes will evolve in future. In order to deal with the gap of lacking such kind of benchmark, a draft maturity model is developed for digital twin application in the IAM field. Firstly, an overview of current smart cities maturity models is given, based on which the draft Maturity Model of Digital Twin Application for Infrastructure Asset Management (MM-DTIAM) is developed for multi-stakeholders to evaluate and derive informed decision. The process of development follows a systematic approach with four major procedures, namely scoping, designing, populating and testing. Through in-depth literature review, interview and focus group meeting, the key domain areas are populated, defined and iteratively tuned. Finally, the case study of several digital twin projects is conducted for self-verification. The findings of the research reveal that: (i) the developed maturity model outlines five maturing levels leading to an optimised digital twin application from the aspects of strategic intent, data, technology, governance, and stakeholders’ engagement; (ii) based on the case study, levels 1 to 3 are already partially implemented in some initiatives while level 4 is on the way; and (iii) more practices are still needed to refine the draft to be mutually exclusive and collectively exhaustive in key domain areas.Keywords: digital twin, infrastructure asset management, maturity model, smart city
Procedia PDF Downloads 1617189 Transforming Healthcare Delivery: Technological Infrastructure for Decentralized Patient-Centric Ecosystems Through Comprehensive Digital Platform Analysis and Strategic Intervention
Authors: Munachiso A. Muoneke
Abstract:
The global healthcare system faces unprecedented challenges of fragmented information systems, inefficient data management, and limited service accessibility. With the rapid evolution of digital technologies, there is a dire need to develop integrated technological infrastructures that can reinvent healthcare delivery from its core. This research addresses the significant gap between existing healthcare technologies and the growing demand for more responsive, secure, and patient-centered medical services. The study uses a mixed-method research approach, combining quantitative system performance analysis and qualitative healthcare provider interviews to comprehensively evaluate the limitations of the current digital health infrastructure. Across multiple healthcare settings, technological barriers are mapped to help develop a robust framework for assessing and redesigning digital health platforms. The research reveals significant potential for technology to transform healthcare delivery. It reveals that strategic technological interventions can reduce administrative inefficiencies by up to 40%, improving patient data security and creating more responsive healthcare ecosystems. The research shows how integrated digital infrastructure can bridge existing gaps in healthcare service delivery, improving patient access and healthcare provider coordination. By providing a practical framework for the transformation of digital health infrastructure, this research offers actionable insights for healthcare providers, technology developers and policy makers seeking to modernize healthcare service delivery in an increasingly digital world.Keywords: decentralized healthcare, digital health, healthcare systems transformation, patient-centric technology
Procedia PDF Downloads 87188 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment
Authors: Temitayo Tosin Alawiye
Abstract:
Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.Keywords: agricultural waste, climate change, green energy, soil borne plant disease
Procedia PDF Downloads 2717187 Evaluating the Perception of Roma in Europe through Social Network Analysis
Authors: Giulia I. Pintea
Abstract:
The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.Keywords: applied mathematics, oppression, Roma people, social network analysis
Procedia PDF Downloads 2787186 Characteristics of Technology Infrastructure in Small Firms
Authors: Davinder Singh, Jaimal Singh Khamba, Tarun Nanda
Abstract:
Growth of the Indian economy has accelerated to 8% and efforts are on to further propel it to 10%. Undoubtedly, all the segments of the economy, viz. agriculture, industry and services have to improve their contribution to the economy. Growth of Micro-small and medium enterprises (MSMEs) is a sine qua non for the growth of industry, exports and other segments of the economy. Furthermore, promotion of entrepreneurship is also vital for sustenance and upward movement of the current growth trajectory of the economy. The MSME sector acts as a catalyst in upholding and encouraging the creation of the innovative spirit and entrepreneurship in the economy, thereby helping in laying the foundation for rapid industrial development. In this competitive world, they need to be able to confront the increasing competition from developed and emerging economies and to plug into the new market opportunities.Keywords: characteristics, management, MSMEs, technology infrastructure
Procedia PDF Downloads 6437185 The Nature and the Structure of Scientific and Innovative Collaboration Networks
Authors: Afshin Moazami, Andrea Schiffauerova
Abstract:
The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States
Procedia PDF Downloads 2037184 Energy Balance Routing to Enhance Network Performance in Wireless Sensor Network
Authors: G. Baraneedaran, Deepak Singh, Kollipara Tejesh
Abstract:
The wireless sensors network has been an active research area over the y-ear passed. Due to the limited energy and communication ability of sensor nodes, it seems especially important to design a routing protocol for WSNs so that sensing data can be transmitted to the receiver effectively, an energy-balanced routing method based on forward-aware factor (FAF-EBRM) is proposed in this paper. In FAF-EBRM, the next-hop node is selected according to the awareness of link weight and forward energy density. A spontaneous reconstruction mechanism for Local topology is designed additionally. In this experiment, FAF-EBRM is compared with LEACH and EECU, experimental results show that FAF-EBRM outperforms LEACH and EECU, which balances the energy consumption, prolongs the function lifetime and guarantees high Qos of WSN.Keywords: energy balance, forward-aware factor (FAF), forward energy density, link weight, network performance
Procedia PDF Downloads 5407183 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom
Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou
Abstract:
The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.Keywords: microbial community, harmful algal bloom, ecological process, network
Procedia PDF Downloads 1167182 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.Keywords: routing, sensor, survey, wireless sensor networks, WSNs
Procedia PDF Downloads 1847181 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping
Authors: Andre Slonopas, Zona Kostic, Warren Thompson
Abstract:
Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory
Procedia PDF Downloads 1897180 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network
Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar
Abstract:
Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.Keywords: Bitcoin network, propagation delay, clustering, scalability
Procedia PDF Downloads 1177179 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 897178 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.Keywords: communication, computer network, data collection, probe
Procedia PDF Downloads 3627177 An Integrated GIS Approach to Sustainable Non-Motorized Transport Analysis in Gondar City Administration, Northwestern Ethiopia
Authors: Yosef Kassa
Abstract:
Gondar City, a city in Ethiopia, is going through growth and increased use of motor vehicles, causing issues of traffic congestion, pollution, and limited mobility options. Despite the growing number of cars on the road, walking still accounts for 54% of all journeys. However, the city’s transportation planning has mainly focused on accommodating vehicles, leading to a lack of infrastructure for non-motorized transportation (nmt). This study utilized GIS analysis and surveys involving residents to examine how aspects of the city impact motorized transport. The GIS analysis objectively evaluated built environment factors influencing nmt, such as infrastructure quality, land usage patterns, topography features, and environmental factors using a multi-criteria analysis method (mca). The survey gathered feedback from residents on these factors and analyzed them statistically. The GIS analysis pinpointed areas with potential for nmt, slopes (<10.03°), mixed-use developments with 15% coverage, and high intersection densities (> 4.2/100m). On the hand, steep slopes (>23.77°) and low intersection areas require interventions. The MCA analysis indicated that 66% of areas in Gondar City had limited nmt accessibility levels, while only 7% were considered accessible. According to survey findings, environmental characteristics such as building density differed throughout sub-cities and demographics, with 1-3 story townhouses dominating Azezo Teda compared to connected kebele housing in Arada, while agreeing topography has obstructed walking. Correlation analysis shows significant relationships like topographies' negative associations with connectivity (-0.373**) and infrastructure (-0.391**). Although, regression analysis found housing type (1.036), safety (-0.688), land use (0.933), connectedness (0.585), and infrastructure (0.889) with p<0.05 were among the determinants of transportation frequency. The integrated analysis uncovered disparities between survey analysis and GIS analysis. In Azezo Teda, the GIS score is 2.27, while the survey score is 2.89. However, there is a correlation (rho=0.56, p<0.01) indicating the reliability of gis in assessing walkability. This research offers insights for enhancing nmt accessibility in Gondar City by promoting transportation planning that focuses on (nmt) and the needs of residents.Keywords: non-motorized transportation, accessibility, built environment, infrastructure
Procedia PDF Downloads 107176 A Novel Solution Methodology for Transit Route Network Design Problem
Authors: Ghada Moussa, Mamoud Owais
Abstract:
Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.Keywords: integer programming, transit route design, transportation, urban planning
Procedia PDF Downloads 2747175 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 453