Search results for: game predictions
94 Reworking of the Anomalies in the Discounted Utility Model as a Combination of Cognitive Bias and Decrease in Impatience: Decision Making in Relation to Bounded Rationality and Emotional Factors in Intertemporal Choices
Authors: Roberta Martino, Viviana Ventre
Abstract:
Every day we face choices whose consequences are deferred in time. These types of choices are the intertemporal choices and play an important role in the social, economic, and financial world. The Discounted Utility Model is the mathematical model of reference to calculate the utility of intertemporal prospects. The discount rate is the main element of the model as it describes how the individual perceives the indeterminacy of subsequent periods. Empirical evidence has shown a discrepancy between the behavior expected from the predictions of the model and the effective choices made from the decision makers. In particular, the term temporal inconsistency indicates those choices that do not remain optimal with the passage of time. This phenomenon has been described with hyperbolic models of the discount rate which, unlike the linear or exponential nature assumed by the discounted utility model, is not constant over time. This paper explores the problem of inconsistency by tracing the decision-making process through the concept of impatience. The degree of impatience and the degree of decrease of impatience are two parameters that allow to quantify the weight of emotional factors and cognitive limitations during the evaluation and selection of alternatives. In fact, although the theory assumes perfectly rational decision makers, behavioral finance and cognitive psychology have made it possible to understand that distortions in the decision-making process and emotional influence have an inevitable impact on the decision-making process. The degree to which impatience is diminished is the focus of the first part of the study. By comparing consistent and inconsistent preferences over time, it was possible to verify that some anomalies in the discounted utility model are a result of the combination of cognitive bias and emotional factors. In particular: the delay effect and the interval effect are compared through the concept of misperception of time; starting from psychological considerations, a criterion is proposed to identify the causes of the magnitude effect that considers the differences in outcomes rather than their ratio; the sign effect is analyzed by integrating in the evaluation of prospects with negative outcomes the psychological aspects of loss aversion provided by Prospect Theory. An experiment implemented confirms three findings: the greatest variation in the degree of decrease in impatience corresponds to shorter intervals close to the present; the greatest variation in the degree of impatience occurs for outcomes of lower magnitude; the variation in the degree of impatience is greatest for negative outcomes. The experimental phase was implemented with the construction of the hyperbolic factor through the administration of questionnaires constructed for each anomaly. This work formalizes the underlying causes of the discrepancy between the discounted utility model and the empirical evidence of preference reversal.Keywords: decreasing impatience, discount utility model, hyperbolic discount, hyperbolic factor, impatience
Procedia PDF Downloads 10393 Trends in Conservation and Inheritance of Musical Culture of Ethnic Groups: A Case Study of the Akha Music in Chiang Rai Province, Thailand
Authors: Nutthan Inkhong, Sutthiphong Ruangchante
Abstract:
Chiang Rai province is located at the northern border of Thailand. Most of the geography there is the northern continental highlands, and the population has many types of inhabitants, including Thai people, immigrants and ethnic groups such as Akha, Lahu, Lisu, Yao, etc. Most of these ethnic groups migrated from neighbouring countries such as Myanmar, Laos, China, etc. and settled in the mountains. Each ethnic group has their unique traditions, culture, and ways of life, including the musical culture that the ancestors of each ethnic group brought with them. In the present, the Akha have the largest population in the region and still live together in numerous villages in many districts. Thus, Akha musical culture still appears in the community traditions and cultural events of Chiang Rai province regularly. This article presents the situations of Akha musical culture in the present and the predictions for the future. The study method involves the analysis of music information and the related social contexts, which were collected from the fieldwork of ethnomusicological methodology by in-depth interviews, observations, audio and visual recordings, and related documents. The results found that the important persons who are related with Akha musical culture include (1) a musical instrument maker (lives in Mae Chan district) who produces various Akha musical instruments, including gourd mouth organs, Akha drums, two-way flutes, three-hole flutes, Jew’s harps (the sound of teenage love), buffalo horns (the sound symbol of hunting) and bird call instruments (the imitation of bird sounds), (2) a folk philosopher (lives in Mae Pha Luang district) who can teach music to the new generation of Akha people as well as lecture and demonstrate music to academics and tourists, and (3) a community leader (lives in Mae Chan district) who conserves Akha performances, singing and music through various activities of the students in an informal school. Because of the changes to the social contexts and ways of life of the Akha people, such as the educational system, religion, social media, etc., including the popularity of both Thai and international popular music among the new generation of Akha people, changes to and the fading away of Akha musical culture in the future may likely occur. Therefore, the conservation and inheritance of Akha music is an issue that should be resolved quickly. This primary study leads to the next step of the ethnomusicological work and plays a part in preventing or reducing the problems impacting Akha musical culture survival by the recording of Akha music in all of its dimensions, such as producing musical instruments, playing musical instruments, analysis of tuning systems, recording Akha music as musical notation using symbols, researching related social contexts, etc. and the transcription of this information to create lessons that can be returned to the Akha community.Keywords: Akha music, Chiang Rai, ethnic music in Thailand, ethnomusicology
Procedia PDF Downloads 16192 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer
Authors: Ankan Roy, Niharika, Samir Kumar Patra
Abstract:
Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions
Procedia PDF Downloads 12891 Next-Generation Disability Management: Diverse and Inclusive Strategies for All
Authors: Nidhi Malshe
Abstract:
Background: Currently, there are approximately 1.3 billion individuals worldwide living with significant disabilities, which accounts for 16% of the global population—about 1 in 6 people. As the global population continues to grow, so does the number of people experiencing disabilities. Traffic accidents alone contribute to millions of injuries and disabilities each year, particularly among young people. Additionally, as life expectancy rises, more individuals are likely to experience disabilities in their later years. 27.0% of Canadians aged 15 and over, or 8 million people, had at least one disability in 2022. This represents an increase of 4.7 percentage points from 2017. A person with a disability earns 21.4% less on average as compared to a person without a disability. Using innovative and inclusive methods for accommodations, disability management, and employment, we can progress towards inclusive workplaces and potential income parity for this equity-seeking population. Objective: This study embraces innovative and inclusive approaches to disability management, thereby unlocking the advantages associated with a) fostering equal opportunities for all individuals, b) facilitating streamlined accommodations and making it easier for companies to accommodate people with disabilities, c) harnessing diverse perspectives to drive innovation and enhance overall productivity. Methodology: Literature review, assessments of specific needs and requirements in the workplace. a) Encourage the ability to think out of the box for potential workplace accommodations based on the specific needs of individuals. e.g., propose prolonged integration post disability. b) Perform a cost-benefit analysis of early interventions of return to work vs. duration on disability. c) Expand the scope of vocational assessment/retraining – e.g., retraining a person with permanent physical impairment to become a video game coder. d) Leverage the use of technology while planning to return to work e.g., speech-to-text software for persons with voice impairments. Hypothesized Results: Prolonged progression of return to work increases the potential for sustainable and productive employment. Co-developing a person-centric accommodation plan based on reported functional abilities and applying pioneering methods for extending accommodations to prevent secondary disabilities. Facilitate a sense of belonging by providing employees with benefits and initiatives that honor their unique contributions. Engage individuals with disabilities as active members of the planning committee to ensure the development of innovative and inclusive accommodations that address the needs of all. Conclusion: The global pandemic underscored the need for creativity in our daily routine. It is imperative to integrate the lessons learned from the pandemic, enhance them within employment, and return to work processes. These learnings can also be used to develop creative, distinct methods to ensure equal opportunities for everyone.Keywords: disbaility management, diversity, inclusion, innovation
Procedia PDF Downloads 1490 A Study on Green Building Certification Systems within the Context of Anticipatory Systems
Authors: Taner Izzet Acarer, Ece Ceylan Baba
Abstract:
This paper examines green building certification systems and their current processes in comparison with anticipatory systems. Rapid growth of human population and depletion of natural resources are causing irreparable damage to urban and natural environment. In this context, the concept of ‘sustainable architecture’ has emerged in the 20th century so as to establish and maintain standards for livable urban spaces, to improve quality of urban life, and to preserve natural resources for future generations. The construction industry is responsible for a large part of the resource consumption and it is believed that the ‘green building’ designs that emerge in construction industry can reduce environmental problems and contribute to sustainable development around the world. A building must meet a specific set of criteria, set forth through various certification systems, in order to be eligible for designation as a green building. It is disputable whether methods used by green building certification systems today truly serve the purposes of creating a sustainable world. Accordingly, this study will investigate the sets of rating systems used by the most popular green building certification programs, including LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment's Environmental Assessment Methods), DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen System), in terms of ‘Anticipatory Systems’ in accordance with the certification processes and their goals, while discussing their contribution to architecture. The basic methodology of the study is as follows. Firstly analyzes of brief historical and literature review of green buildings and certificate systems will be stated. Secondly, processes of green building certificate systems will be disputed by the help of anticipatory systems. Anticipatory Systems is a set of systems designed to generate action-oriented projections and to forecast potential side effects using the most current data. Anticipatory Systems pull the future into the present and take action based on future predictions. Although they do not have a claim to see into the future, they can provide foresight data. When shaping the foresight data, Anticipatory Systems use feedforward instead of feedback, enabling them to forecast the system’s behavior and potential side effects by establishing a correlation between the system’s present/past behavior and projected results. This study indicates the goals and current status of LEED, BREEAM and DGNB rating systems that created by using the feedback technique will be examined and presented in a chart. In addition, by examining these rating systems with the anticipatory system that using the feedforward method, the negative influences of the potential side effects on the purpose and current status of the rating systems will be shown in another chart. By comparing the two obtained data, the findings will be shown that rating systems are used for different goals than the purposes they are aiming for. In conclusion, the side effects of green building certification systems will be stated by using anticipatory system models.Keywords: anticipatory systems, BREEAM, certificate systems, DGNB, green buildings, LEED
Procedia PDF Downloads 22089 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 4188 Trainability of Executive Functions during Preschool Age Analysis of Inhibition of 5-Year-Old Children
Authors: Christian Andrä, Pauline Hähner, Sebastian Ludyga
Abstract:
Introduction: In the recent past, discussions on the importance of physical activity for child development have contributed to a growing interest in executive functions, which refer to cognitive processes. By controlling, modulating and coordinating sub-processes, they make it possible to achieve superior goals. Major components include working memory, inhibition and cognitive flexibility. While executive functions can be trained easily in school children, there are still research deficits regarding the trainability during preschool age. Methodology: This quasi-experimental study with pre- and post-design analyzes 23 children [age: 5.0 (mean value) ± 0.7 (standard deviation)] from four different sports groups. The intervention group was made up of 13 children (IG: 4.9 ± 0.6), while the control group consisted of ten children (CG: 5.1 ± 0.9). Between pre-test and post-test, children from the intervention group participated special games that train executive functions (i.e., changing rules of the game, introduction of new stimuli in familiar games) for ten units of their weekly sports program. The sports program of the control group was not modified. A computer-based version of the Eriksen Flanker Task was employed in order to analyze the participants’ inhibition ability. In two rounds, the participants had to respond 50 times and as fast as possible to a certain target (direction of sight of a fish; the target was always placed in a central position between five fish). Congruent (all fish have the same direction of sight) and incongruent (central fish faces opposite direction) stimuli were used. Relevant parameters were response time and accuracy. The main objective was to investigate whether children from the intervention group show more improvement in the two parameters than the children from the control group. Major findings: The intervention group revealed significant improvements in congruent response time (pre: 1.34 s, post: 1.12 s, p<.01), while the control group did not show any statistically relevant difference (pre: 1.31 s, post: 1.24 s). Likewise, the comparison of incongruent response times indicates a comparable result (IG: pre: 1.44 s, post: 1.25 s, p<.05 vs. CG: pre: 1.38 s, post: 1.38 s). In terms of accuracy for congruent stimuli, the intervention group showed significant improvements (pre: 90.1 %, post: 95.9 %, p<.01). In contrast, no significant improvement was found for the control group (pre: 88.8 %, post: 92.9 %). Vice versa, the intervention group did not display any significant results for incongruent stimuli (pre: 74.9 %, post: 83.5 %), while the control group revealed a significant difference (pre: 68.9 %, post: 80.3 %, p<.01). The analysis of three out of four criteria demonstrates that children who took part in a special sports program improved more than children who did not. The contrary results for the last criterion could be caused by the control group’s low results from the pre-test. Conclusion: The findings illustrate that inhibition can be trained as early as in preschool age. The combination of familiar games with increased requirements for attention and control processes appears to be particularly suitable.Keywords: executive functions, flanker task, inhibition, preschool children
Procedia PDF Downloads 25387 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece
Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis
Abstract:
Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).Keywords: dairy cows, seropositivity, spatial analysis, temperature factors
Procedia PDF Downloads 19886 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 14285 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables
Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez
Abstract:
Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X
Procedia PDF Downloads 26484 Improving Working Memory in School Children through Chess Training
Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy
Abstract:
Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess training, cognitive development, executive functions, school children, working memory
Procedia PDF Downloads 26383 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling
Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather
Abstract:
New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling
Procedia PDF Downloads 19182 Visuospatial Perspective Taking and Theory of Mind in a Clinical Approach: Development of a Task for Adults
Authors: Britt Erni, Aldara Vazquez Fernandez, Roland Maurer
Abstract:
Visuospatial perspective taking (VSPT) is a process that allows to integrate spatial information from different points of view, and to transform the mental images we have of the environment to properly orient our movements and anticipate the location of landmarks during navigation. VSPT is also related to egocentric perspective transformations (imagined rotations or translations of one's point of view) and to infer the visuospatial experiences of another person (e.g. if and how another person sees objects). This process is deeply related to a wide-ranging capacity called the theory of mind (ToM), an essential cognitive function that allows us to regulate our social behaviour by attributing mental representations to individuals in order to make behavioural predictions. VSPT is often considered in the literature as the starting point of the development of the theory of mind. VSPT and ToM include several levels of knowledge that have to be assessed by specific tasks. Unfortunately, the lack of tasks assessing these functions in clinical neuropsychology leads to underestimate, in brain-damaged patients, deficits of these functions which are essential, in everyday life, to regulate our social behaviour (ToM) and to navigate in known and unknown environments (VSPT). Therefore, this study aims to create and standardize a VSPT task in order to explore the cognitive requirements of VSPT and ToM, and to specify their relationship in healthy adults and thereafter in brain-damaged patients. Two versions of a computerized VSPT task were administered to healthy participants (M = 28.18, SD = 4.8 years). In both versions the environment was a 3D representation of 10 different geometric shapes placed on a circular base. Two sets of eight pictures were generated from this: of the environment with an avatar somewhere on its periphery (locations) and of what the avatar sees from that place (views). Two types of questions were asked: a) identify the location from the view, and b) identify the view from the location. Twenty participants completed version 1 of the task and 20 completed the second version, where the views were offset by ±15° (i.e., clockwise or counterclockwise) and participants were asked to choose the closest location or the closest view. The preliminary findings revealed that version 1 is significantly easier than version 2 for accuracy (with ceiling scores for version 1). In version 2, participants responded significantly slower when they had to infer the avatar's view from the latter's location, probably because they spent more time visually exploring the different views (responses). Furthermore, men significantly performed better than women in version 1 but not in version 2. Most importantly, a sensitive task (version 2) has been created for which the participants do not seem to easily and automatically compute what someone is looking at yet which does not involve more heavily other cognitive functions. This study is further completed by including analysis on non-clinical participants with low and high degrees of schizotypy, different socio-educational status, and with a range of older adults to examine age-related and other differences in VSPT processing.Keywords: mental transformation, spatial cognition, theory of mind, visuospatial perspective taking
Procedia PDF Downloads 20381 Delving into Market-Driving Behavior: A Conceptual Roadmap to Delineating Its Key Antecedents and Outcomes
Authors: Konstantinos Kottikas, Vlasis Stathakopoulos, Ioannis G. Theodorakis, Efthymia Kottika
Abstract:
Theorists have argued that Market Orientation is comprised of two facets, namely the Market Driven and the Market Driving components. The present theoretical paper centers on the latter, which to date has been notably under-investigated. The term Market Driving (MD) pertains to influencing the structure of the market, or the behavior of market players in a direction that enhances the competitive edge of the firm. Presently, the main objectives of the paper are the specification of key antecedents and outcomes of Market Driving behavior. Market Driving firms behave proactively, by leading their customers and changing the rules of the game rather than by responding passively to them. Leading scholars were the first to conceptually conceive the notion, followed by some qualitative studies and a limited number of quantitative publications. However, recently, academicians noted that research on the topic remains limited, expressing a strong necessity for further insights. Concerning the key antecedents, top management’s Transformational Leadership (i.e. the form of leadership which influences organizational members by aligning their values, goals and aspirations to facilitate value-consistent behaviors) is one of the key drivers of MD behavior. Moreover, scholars have linked the MD concept with Entrepreneurship. Finally, the role that Employee’s Creativity plays in the development of MD behavior has been theoretically exemplified by a stream of literature. With respect to the key outcomes, it has been demonstrated that MD Behavior positively triggers firm Performance, while theorists argue that it empowers the Competitive Advantage of the firm. Likewise, researchers explicate that MD Behavior produces Radical Innovation. In order to test the robustness of the proposed theoretical framework, a combination of qualitative and quantitative methods is proposed. In particular, the conduction of in-depth interviews with distinguished executives and academicians, accompanied with a large scale quantitative survey will be employed, in order to triangulate the empirical findings. Given that it triggers overall firm’s success, the MD concept is of high importance to managers. Managers can become aware that passively reacting to market conditions is no longer sufficient. On the contrary, behaving proactively, leading the market, and shaping its status quo are new innovative approaches that lead to a paramount competitive posture and Innovation outcomes. This study also exemplifies that managers can foster MD Behavior through Transformational Leadership, Entrepreneurship and recruitment of Creative Employees. To date, the majority of the publications on Market Orientation is unilaterally directed towards the responsive (i.e. the Market Driven) component. The present paper further builds on scholars’ exhortations, and investigates the Market Driving facet, ultimately aspiring to conceptually integrate the somehow fragmented scientific findings, in a holistic framework.Keywords: entrepreneurial orientation, market driving behavior, market orientation
Procedia PDF Downloads 38480 Effects of Exposure to a Language on Perception of Non-Native Phonologically Contrastive Duration
Authors: Chuyu Huang, Itsuki Minemi, Kuanlin Chen, Yuki Hirose
Abstract:
It remains unclear how language speakers are able to perceive phonological contrasts that do not exist on their own. This experiment uses the vowel-length distinction in Japanese, which is phonologically contrastive and co-occurs with tonal change in some cases. For speakers whose first language does not distinguish vowel length, contrastive duration is usually misperceived, e.g., Mandarin speakers. Two alternative hypotheses for how Mandarin speakers would perceive a phonological contrast that does not exist in their language make different predictions. The stress parameter model does not have a clear prediction about the impact of tonal type. Mandarin speakers will likely be not able to perceive vowel length as well as Japanese native speakers do, but the performance might not correlate to tonal type because the prosody of their language is distinctive, which requires users to encode lexical prosody and notice subtle differences in word prosody. By contrast, cue-based phonetic models predict that Mandarin speakers may rely on pitch differences, a secondary cue, to perceive vowel length. Two groups of Mandarin speakers, including naive non-Japanese speakers and beginner learners, were recruited to participate in an AX discrimination task involving two Japanese sound stimuli that contain a phonologically contrastive environment. Participants were asked to indicate whether the two stimuli containing a vowel-length contrast (e.g., maapero vs. mapero) sound the same. The experiment was bifactorial. The first factor contrasted three syllabic positions (syllable position; initial/medial/final), as it would be likely to affect the perceptual difficulty, as seen in previous studies, and the second factor contrasted two pitch types (accent type): one with accentual change that could be distinguished with the lexical tones in Mandarin (the different condition), with the other group having no tonal distinction but only differing in vowel length (the same condition). The overall results showed that a significant main effect of accent type by applying a linear mixed-effects model (β = 1.48, SE = 0.35, p < 0.05), which implies that Mandarin speakers tend to more successfully recognize vowel-length differences when the long vowel counterpart takes on a tone that exists in Mandarin. The interaction between the accent type and the syllabic position is also significant (β = 2.30, SE = 0.91, p < 0.05), showing that vowel lengths in the different conditions are more difficult to recognize in the word-final case relative to the initial condition. The second statistical model, which compares naive speakers to beginners, was conducted with logistic regression to test the effects of the participant group. A significant difference was found between the two groups (β = 1.06, 95% CI = [0.36, 2.03], p < 0.05). This study shows that: (1) Mandarin speakers are likely to use pitch cues to perceive vowel length in a non-native language, which is consistent with the cue-based approaches; (2) an exposure effect was observed: the beginner group achieved a higher accuracy for long vowel perception, which implied the exposure effect despite the short period of language learning experience.Keywords: cue-based perception, exposure effect, prosodic perception, vowel duration
Procedia PDF Downloads 22079 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density
Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany
Abstract:
Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination
Procedia PDF Downloads 26378 The Rite of Jihadification in ISIS Modified Video Games: Mass Deception and Dialectic of Religious Regression in Technological Progression
Authors: Venus Torabi
Abstract:
ISIS, the terrorist organization, modified two videogames, ARMA III and Grand Theft Auto 5 (2013) as means of online recruitment and ideological propaganda. The urge to study the mechanism at work, whether it has been successful or not, derives (Digital) Humanities experts to explore how codes of terror, Islamic ideology and recruitment strategies are incorporated into the ludic mechanics of videogames. Another aspect of the significance lies in the fact that this is a latent problem that has not been fully addressed in an interdisciplinary framework prior to this study, to the best of the researcher’s knowledge. Therefore, due to the complexity of the subject, the present paper entangles with game studies, philosophical and religious poles to form the methodology of conducting the research. As a contextualized epistemology of such exploitation of videogames, the core argument is building on the notion of “Culture Industry” proposed by Theodore W. Adorno and Max Horkheimer in Dialectic of Enlightenment (2002). This article posits that the ideological underpinnings of ISIS’s cause corroborated by the action-bound mechanics of the videogames are in line with adhering to the Islamic Eschatology as a furnishing ground and an excuse in exercising terrorism. It is an account of ISIS’s modification of the videogames, a tool of technological progression to practice online radicalization. Dialectically, this practice is packed up in rhetoric for recognizing a religious myth (the advent of a savior), as a hallmark of regression. The study puts forth that ISIS’s wreaking havoc on the world, both in reality and within action videogames, is negotiating the process of self-assertion in the players of such videogames (by assuming one’s self a member of terrorists) that leads to self-annihilation. It tries to unfold how ludic Mod videogames are misused as tools of mass deception towards ethnic cleansing in reality and line with the distorted Eschatological myth. To conclude, this study posits videogames to be a new avenue of mass deception in the framework of the Culture Industry. Yet, this emerges as a two-edged sword of mass deception in ISIS’s modification of videogames. It shows that ISIS is not only trying to hijack the minds through online/ludic recruitment, it potentially deceives the Muslim communities or those prone to radicalization into believing that it's terrorist practices are preparing the world for the advent of a religious savior based on Islamic Eschatology. This is to claim that the harsh actions of the videogames are potentially breeding minds by seeds of terrorist propaganda and numbing them to violence. The real world becomes an extension of that harsh virtual environment in a ludic/actual continuum, the extension that is contributing to the mass deception mechanism of the terrorists, in a clandestine trend.Keywords: culture industry, dialectic, ISIS, islamic eschatology, mass deception, video games
Procedia PDF Downloads 13777 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports
Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi
Abstract:
Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.Keywords: power, aerobic, absolute power, normalized power
Procedia PDF Downloads 35376 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 7875 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby
Authors: Jazim Sohail, Filipe Teixeira-Dias
Abstract:
Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI
Procedia PDF Downloads 21774 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects
Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost
Abstract:
A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet
Procedia PDF Downloads 36773 Multicultural Education in the National Context: A Study of Peoples' Friendship University of Russia
Authors: Maria V. Mishatkina
Abstract:
The modelling of dialogical environment is an essential feature of modern education. The dialogue of cultures is a foundation and an important prerequisite for a formation of a human’s main moral qualities such as an ability to understand another person, which is manifested in such values as tolerance, respect, mutual assistance and mercy. A formation of a modern expert occurs in an educational environment that is significantly different from what we had several years ago. Nowadays university education has qualitatively new characteristics. They may be observed in Peoples’ Friendship University of Russia (RUDN University), a top Russian higher education institution which unites representatives of more than 150 countries. The content of its educational strategies is not an adapted cultural experience but material between science and innovation. Besides, RUDN University’s profiles and specialization are not equal to the professional structures. People study not a profession in a strict sense but a basic scientific foundation of an activity in different socio-cultural areas (science, business and education). RUDN University also provides a considerable unit of professional education components. They are foreign languages skills, economic, political, ethnic, communication and computer culture, theory of information and basic management skills. Moreover, there is a rich social life (festive multicultural events, theme parties, journeys) and prospects concerning the inclusive approach to education (for example, a special course ‘Social Pedagogy: Issues of Tolerance’). In our research, we use such methods as analysis of modern and contemporary scientific literature, opinion poll (involving students, teachers and research workers) and comparative data analysis. We came to the conclusion that knowledge transfer of RUDN student in the activity happens through making goals, problems, issues, tasks and situations which simulate future innovative ambiguous environment that potentially prepares him/her to dialogical way of life. However, all these factors may not take effect if there is no ‘personal inspiration’ of students by communicative and dialogic values, their participation in a system of meanings and tools of learning activity that is represented by cooperation within the framework of scientific and pedagogical schools dialogue. We also found out that dominating strategies of ensuring the quality of education are those that put students in the position of the subject of their own education. Today these strategies and approaches should involve such approaches and methods as task, contextual, modelling, specialized, game-imitating and dialogical approaches, the method of practical situations, etc. Therefore, University in the modern sense is not only an educational institution, but also a generator of innovation, cooperation among nations and cultural progress. RUDN University has been performing exactly this mission for many decades.Keywords: dialogical developing situation, dialogue of cultures, readiness for dialogue, university graduate
Procedia PDF Downloads 21972 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 13671 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach
Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi
Abstract:
Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.
Procedia PDF Downloads 7270 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region
Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha
Abstract:
Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.Keywords: climate change, migration, rural productivity, semiarid region
Procedia PDF Downloads 35069 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles
Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan
Abstract:
Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity
Procedia PDF Downloads 6968 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 9067 Border Security: Implementing the “Memory Effect” Theory in Irregular Migration
Authors: Iliuta Cumpanasu, Veronica Oana Cumpanasu
Abstract:
This paper focuses on studying the conjunction between the new emerged theory of “Memory Effect” in Irregular Migration and Related Criminality and the notion of securitization, and its impact on border management, bringing about a scientific advancement in the field by identifying the patterns corresponding to the linkage of the two concepts, for the first time, and developing a theoretical explanation, with respect to the effects of the non-military threats on border security. Over recent years, irregular migration has experienced a significant increase worldwide. The U.N.'s refugee agency reports that the number of displaced people is at its highest ever - surpassing even post-World War II numbers when the world was struggling to come to terms with the most devastating event in history. This is also the fresh reality within the core studied coordinate, the Balkan Route of Irregular Migration, which starts from Asia and Africa and continues to Turkey, Greece, North Macedonia or Bulgaria, Serbia, and ends in Romania, where thousands of migrants find themselves in an irregular situation concerning their entry to the European Union, with its important consequences concerning the related criminality. The data from the past six years was collected by making use of semi-structured interviews with experts in the field of migration and desk research within some organisations involved in border security, pursuing the gathering of genuine insights from the aforementioned field, which was constantly addressed the existing literature and subsequently subjected to the mixed methods of analysis, including the use of the Vector Auto-Regression estimates model. Thereafter, the analysis of the data followed the processes and outcomes in Grounded Theory, and a new Substantive Theory emerged, explaining how the phenomena of irregular migration and cross-border criminality are the decisive impetus for implementing the concept of securitization in border management by using the proposed pattern. The findings of the study are therefore able to capture an area that has not yet benefitted from a comprehensive approach in the scientific community, such as the seasonality, stationarity, dynamics, predictions, or the pull and push factors in Irregular Migration, also highlighting how the recent ‘Pandemic’ interfered with border security. Therefore, the research uses an inductive revelatory theoretical approach which aims at offering a new theory in order to explain a phenomenon, triggering a practically handy contribution for the scientific community, research institutes or Academia and also usefulness to organizational practitioners in the field, among which UN, IOM, UNHCR, Frontex, Interpol, Europol, or national agencies specialized in border security. The scientific outcomes of this study were validated on June 30, 2021, when the author defended his dissertation for the European Joint Master’s in Strategic Border Management, a two years prestigious program supported by the European Commission and Frontex Agency and a Consortium of six European Universities and is currently one of the research objectives of his pending PhD research at the West University Timisoara.Keywords: migration, border, security, memory effect
Procedia PDF Downloads 9266 Monitoring and Evaluation of Master Science Trainee Educational Students to their Practicum in Teaching Physics for Improving and Creating Attitude Skills for Sustainable Developing Upper Secondary Students in Thailand
Authors: T. Santiboon, S. Tongbu, P. S. Saihong
Abstract:
This study focuses on investigating students' perceptions of their physics classroom learning environments of their individualizations and their interactions with the instructional practicum in teaching physics of the master science trainee educational students for improving and creating attitude skills’ sustainable development toward physics for upper secondary educational students in Thailand. Associations between these perceptions and students' attitudes toward physics were also determined. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI) modified from the original Science Laboratory Environment Inventory. The 25-item Individualized Classroom Environment Questionnaire (ICEQ) was assessed those dimensions which distinguish individualized physics classrooms from convention on individualized open and inquiry-based education Teacher-student interactions were assessed with the 48-item Questionnaires on Teacher Interaction (QTI). Both these questionnaires have an Actual Form (assesses the class as it actually is) and a Preferred Form (asks the students what they would prefer their class to be like - the ideal situation). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA) The questionnaires were administered in three phases with the Custer Random Sampling technique to a sample consisted of 989 students in 28 physics classes from 10 schools at the grade 10, 11, and 12 levels in the Secondary Educational Service Area 26 (Maha Sarakham Province) and Area 27 (Roi-Et). Statistically significant differences were found between the students' perceptions of actual-1, actual-2 and preferred environments of their physics laboratory and distinguish individualized classrooms, and teacher interpersonal behaviors with their improving and creating attitudes skills’ sustainable development to their physics classes also were found. Predictions of the monitoring and evaluation of master science trainee educational students of their practicum in teaching physics; students’ skills developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%,science trainee educational students of their practicum in teaching physics; students’ skill developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%, 63%, and 72% for the ICEQ, and 38%, 59%, and 68% for the QTI in physics environment classes were attributable to their perceptions of their actual and preferred physics environments and their developing creative science skills’ sustainable toward physics, consequently. Based on all the findings, suggestions for improving the physics laboratory and individualized classes and teacher interpersonal behaviors with students' perceptions are provided of their improving and creating attitude skills’ sustainable development by the master science trainee educational students ’ instructional administrations.Keywords: promotion, instructional model, qualitative method, reflective thinking, trainee teacher student
Procedia PDF Downloads 26865 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence
Authors: Sogand Barghi
Abstract:
The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting
Procedia PDF Downloads 71