Search results for: ego-centric network
3565 A Long Range Wide Area Network-Based Smart Pest Monitoring System
Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee
Abstract:
This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II
Procedia PDF Downloads 3513564 Voice over IP Quality of Service Evaluation for Mobile Ad Hoc Network in an Indoor Environment for Different Voice Codecs
Authors: Lina Abou Haibeh, Nadir Hakem, Ousama Abu Safia
Abstract:
In this paper, the performance and quality of Voice over IP (VoIP) calls carried over a Mobile Ad Hoc Network (MANET) which has a number of SIP nodes registered on a SIP Proxy are analyzed. The testing campaigns are carried out in an indoor corridor structure having a well-defined channel’s characteristics and model for the different voice codecs, G.711, G.727 and G.723.1. These voice codecs are commonly used in VoIP technology. The calls’ quality are evaluated using four Quality of Service (QoS) metrics, namely, mean opinion score (MOS), jitter, delay, and packet loss. The relationship between the wireless channel’s parameters and the optimum codec is well-established. According to the experimental results, the voice codec G.711 has the best performance for the proposed MANET topologyKeywords: wireless channel modelling, Voip, MANET, session initiation protocol (SIP), QoS
Procedia PDF Downloads 2263563 Random Subspace Ensemble of CMAC Classifiers
Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi
Abstract:
The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.Keywords: classification, random subspace, ensemble, CMAC neural network
Procedia PDF Downloads 3283562 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control
Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar
Abstract:
This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory
Procedia PDF Downloads 3903561 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 3043560 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Natalya Berezovski
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle, aviation
Procedia PDF Downloads 4173559 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network
Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti
Abstract:
Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.Keywords: unbalance, parallel misalignment, combined faults, vibration signals
Procedia PDF Downloads 3523558 Mobility Management via Software Defined Networks (SDN) in Vehicular Ad Hoc Networks (VANETs)
Authors: Bilal Haider, Farhan Aadil
Abstract:
A Vehicular Ad hoc Network (VANET) provides various services to end-users traveling on the road at high speeds. However, this high-speed mobility of mobile nodes can cause frequent service disruptions. Various mobility management protocols exist for managing node mobility, but due to their centralized nature, they tend to suffer in the VANET environment. In this research, we proposed a distributed mobility management protocol using software-defined networks (SDN) for VANETs. Instead of relying on a centralized mobility anchor, the mobility functionality is distributed at multiple infrastructural nodes. The protocol is based on the classical Proxy Mobile IP version 6 (PMIPv6). It is evident from simulation results that this work has improved the network performance with respect to nodes throughput, delay, and packet loss.Keywords: SDN, VANET, mobility management, optimization
Procedia PDF Downloads 1693557 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 1983556 Multi-Path Signal Synchronization Model with Phase Length Constraints
Authors: Tzu-Jung Huang, Hsun-Jung Cho, Chien-Chia Liäm Huang
Abstract:
To improve the level of service (LoS) of urban arterial systems containing a series of signalized intersections, a proper design of offsets for all intersections associated is of great importance. The MAXBAND model has been the most common approach for this purpose. In this paper, we propose a MAXBAND model with phase constraints so that the lengths of the phases in a cycle are variable. In other words, the length of a cycle is also variable in our setting. We conduct experiments on a real-world traffic network, having several major paths, in Taiwan for numerical evaluations. Actual traffic data were collected through on-site experiments. Numerical evidences suggest that the improvements are around 32%, on average, in terms of total delay of the entire network.Keywords: arterial progression, MAXBAND, signal control, offset
Procedia PDF Downloads 3563555 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 3463554 Cost of Outpatient Procedures for Ostomized Patients Treated in the Public Health Network in Brazil and Its Impact on the Budget of the Unified Health System
Authors: Karina Guimaraes, Lilian Santos
Abstract:
This study has the purpose of planning and instituting monitoring actions as a way of knowing the scenario of assistance to the patient with stoma, treated in the public health network in Brazil, from January to November of the year 2016, from the elaboration of a technical document containing the survey of the number of procedures offered and the value of the ostomy services, accredited in the Unified Health System-SUS. The purpose of this document is to improve the quality of these services in the efficient management of available financial resources, making it indispensable for the creation of strategies for the implementation and implementation of care services for people with stomata as a strategic tool in the promotion, prevention, qualification and efficiency in health care.Keywords: health economic, management, ostomy, unified health system
Procedia PDF Downloads 3113553 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks
Authors: Wided Abidi, Tahar Ezzedine
Abstract:
Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency
Procedia PDF Downloads 3293552 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst
Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya
Abstract:
Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.Keywords: collection routes, efficiency, municipal solid waste, optimization
Procedia PDF Downloads 1343551 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1173550 Visualization of Taiwan's Religious Social Networking Sites
Authors: Jia-Jane Shuai
Abstract:
Purpose of this research aims to improve understanding of the nature of online religion by examining the religious social websites. What motivates individual users to use the online religious social websites, and which factors affect those motivations. We survey various online religious social websites provided by different religions, especially the Taiwanese folk religion. Based on the theory of the Content Analysis and Social Network Analysis, religious social websites and religious web activities are examined. This research examined the folk religion websites’ presentation and contents that promote the religious use of the Internet in Taiwan. The difference among different religions and religious websites also be compared. First, this study used keywords to examine what types of messages gained the most clicks of “Like”, “Share” and comments on Facebook. Dividing the messages into four media types, namely, text, link, video, and photo, reveal which category receive more likes and comments than the others. Meanwhile, this study analyzed the five dialogic principles of religious websites accessed from mobile phones and also assessed their mobile readiness. Using the five principles of dialogic theory as a basis, do a general survey on the websites with elements of online religion. Second, the project analyzed the characteristics of Taiwanese participants for online religious activities. Grounded by social network analysis and text mining, this study comparatively explores the network structure, interaction pattern, and geographic distribution of users involved in communication networks of the folk religion in social websites and mobile sites. We studied the linkage preference of different religious groups. The difference among different religions and religious websites also be compared. We examined the reasons for the success of these websites, as well as reasons why young users accept new religious media. The outcome of the research will be useful for online religious service providers and non-profit organizations to manage social websites and internet marketing.Keywords: content analysis, online religion, social network analysis, social websites
Procedia PDF Downloads 1673549 Enhancing Urban Sustainability through Integrated Green Spaces: A Focus on Tehran
Authors: Azadeh Mohajer Milani
Abstract:
Urbanization constitutes an irreversible global trend, presenting myriad challenges such as heightened energy consumption, pollution, congestion, and the depletion of natural resources. Today's urban landscapes have emerged as focal points for economic, social, and environmental challenges, underscoring the pressing need for sustainable development. This article delves into the realm of sustainable urban development, concentrating on the pivotal role played by integrated green spaces as an optimal solution to address environmental concerns within cities. The study utilizes Tehran as a case study. Our findings underscore the imperative of preserving and expanding green spaces in urban areas, coupled with the establishment of well-designed ecological networks, to enhance environmental quality and elevate the sustainability of cities. Notably, Tehran's urban green spaces exhibit a disjointed design, lacking a cohesive network to connect various patches and corridors, resulting in significant environmental impacts. The results emphasize the necessity of a balanced and proportional distribution of urban green spaces and the creation of a cohesive patch-corridor-matrix network tailored to the ecological and social needs of residents. This approach is crucial for fostering a more sustainable and livable urban environment for all species, with a specific focus on humans.Keywords: ecology, sustainable urban development, sustainable landscape, urban green space network
Procedia PDF Downloads 823548 Evaluation of Urban-Rural Integration of Characteristic Towns in Yunnan Province
Authors: Huang Yong, Chen Qianting, Zhao Shurong
Abstract:
In order to identify the role and effect of Characteristic Towns as an important means to promote urban-rural integration, this paper uses Flow Theory and complex network analysis methods to jointly construct the identification path of urban-rural integration capabilities of Characteristic Towns. Take the National Characteristic Towns of Yunnan Province as the empirical objects to identify their role laws. The study found that in the implementation of the National Characteristic Town Project in Yunnan Province, (1) the population is more susceptible to the impact of the Characteristic Town Project than the technical elements, but the stability is poor; (2) The flow capacity of urban and rural technical elements is weak, and the quality of the enterprise cooperation network in general; (3) Compared with the batch of Characteristic Towns in 2016, its ability to promote urban-rural integration is higher in 2017; (4) The role of the Characteristic Town Project on urban-rural integration focuses on the improvement of the number of urban and rural flow elements. This paper analyzes the mode of the role of Characteristic Towns on urban-rural integration from the perspective of ‘flow,’ establishes a research paradigm for evaluating the role of Characteristic Towns in urban-rural integration capabilities, and builds a path for the application of Characteristic Towns to support the realization of urban-rural integration goals.Keywords: characteristic town, urban-rural integration, flow theory, complex network analysis
Procedia PDF Downloads 1373547 Using Industrial Service Quality to Assess Service Quality Perception in Television Advertisement: A Case Study
Authors: Ana L. Martins, Rita S. Saraiva, João C. Ferreira
Abstract:
Much effort has been placed on the assessment of perceived service quality. Several models can be found in literature, but these are mainly focused on business-to-consumer (B2C) relationships. Literature on how to assess perceived quality in business-to-business (B2B) contexts is scarce both conceptually and in terms of its application. This research aims at filling this gap in literature by applying INDSERV to a case study situation. Under this scope, this research aims at analyzing the adequacy of the proposed assessment tool to other context besides the one where it was developed and by doing so analyzing the perceive quality of the advertisement service provided by a specific television network to its B2B customers. The INDSERV scale was adopted and applied to a sample of 33 clients, via questionnaires adapted to interviews. Data was collected in person or phone. Both quantitative and qualitative data collection was performed. Qualitative data analysis followed content analysis protocol. Quantitative analysis used hypotheses testing. Findings allowed to conclude that the perceived quality of the television service provided by television network is very positive, being the Soft Process Quality the parameter that reveals the highest perceived quality of the service as opposed to Potential Quality. To this end, some comments and suggestions were made by the clients regarding each one of these service quality parameters. Based on the hypotheses testing, it was noticed that only advertisement clients that maintain a connection to the television network from 5 to 10 years do show a significant different perception of the TV advertisement service provided by the company in what the Hard Process Quality parameter is concerned. Through the collected data content analysis, it was possible to obtain the percentage of clients which share the same opinions and suggestions for improvement. Finally, based on one of the four service quality parameter in a B2B context, managerial suggestions were developed aiming at improving the television network advertisement perceived quality service.Keywords: B2B, case study, INDSERV, perceived service quality
Procedia PDF Downloads 2063546 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction
Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade
Abstract:
Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction
Procedia PDF Downloads 3913545 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: routing protocol, optimization, clustering, WSN
Procedia PDF Downloads 4683544 Hybrid Multipath Congestion Control
Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang
Abstract:
Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.Keywords: network, TCP, WiFi, cellular, congestion control
Procedia PDF Downloads 7123543 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 1983542 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 1503541 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model
Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji
Abstract:
An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models
Procedia PDF Downloads 1123540 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 843539 Research on the Internal Mechanism of Overseas Market Opportunity Construction of the Emerging-Market Multinational Enterprises
Authors: Jie Zhang, Chaomin Zhang
Abstract:
Based on the network theory, this paper selects three Emerging-Market Multinationals Enterprises (EMNEs) as the research object and takes the typical overseas market opportunities constructed by them as the analysis unit to research the internal mechanism of overseas market opportunity construction of the EMNEs. The results show that: (1) EMNEs overseas market opportunity construction is a complex process, through the continuous interaction between enterprises and entities in the internal and external networks to achieve opportunity prototype, opportunity creation, and opportunity optimization in overseas markets. (2) Governments, foreign institutions and industry associations in the institutional network and competitors, partners, and customers in the commercial networks are the important entities in the construction of overseas market opportunities. Through the interaction of entity perception, relationship construction, and utilization, enterprises can obtain the necessary information, resources, and political asylum in the process of opportunity construction. (3) Organizations, project teams, and organizational sub-units within the enterprise are important internal entities for the construction of overseas market opportunities. Through the connection between different entities, they can achieve the circulation of resources within the organization and promote the opportunity construction of overseas markets. The research conclusions expand the relevant research on international opportunities and have inspiring and guiding significance for the expansion of EMNEs overseas markets.Keywords: international (overseas) opportunities, opportunity construction, network entities, interaction, resource circulation
Procedia PDF Downloads 153538 Space Debris Mitigation: Solutions from the Dark Skies of the Remote Australian Outback Using a Proposed Network of Mobile Astronomical Observatories
Authors: Muhammad Akbar Hussain, Muhammad Mehdi Hussain, Waqar Haider
Abstract:
There are tens of thousands of undetected and uncatalogued pieces of space debris in the Low Earth Orbit (LEO). They are not only difficult to be detected and tracked, their sheer number puts active satellites and humans in orbit around Earth into danger. With the entry of more governments and private companies into harnessing the Earth’s orbit for communication, research and military purposes, there is an ever-increasing need for not only the detection and cataloguing of these pieces of space debris, it is time to take measures to take them out and clean up the space around Earth. Current optical and radar-based Space Situational Awareness initiatives are useful mostly in detecting and cataloguing larger pieces of debris mainly for avoidance measures. Smaller than 10 cm pieces are in a relatively dark zone, yet these are deadly and capable of destroying satellites and human missions. A network of mobile observatories, connected to each other in real time and working in unison as a single instrument, may be able to detect small pieces of debris and achieve effective triangulation to help create a comprehensive database of their trajectories and parameters to the highest level of precision. This data may enable ground-based laser systems to help deorbit individual debris. Such a network of observatories can join current efforts in detection and removal of space debris in Earth’s orbit.Keywords: space debris, low earth orbit, mobile observatories, triangulation, seamless operability
Procedia PDF Downloads 1643537 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1323536 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis
Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif
Abstract:
Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling
Procedia PDF Downloads 150