Search results for: discrete choice models
7633 Reconfigurable Device for 3D Visualization of Three Dimensional Surfaces
Authors: Robson da C. Santos, Carlos Henrique de A. S. P. Coutinho, Lucas Moreira Dias, Gerson Gomes Cunha
Abstract:
The article refers to the development of an augmented reality 3D display, through the control of servo motors and projection of image with aid of video projector on the model. Augmented Reality is a branch that explores multiple approaches to increase real-world view by viewing additional information along with the real scene. The article presents the broad use of electrical, electronic, mechanical and industrial automation for geospatial visualizations, applications in mathematical models with the visualization of functions and 3D surface graphics and volumetric rendering that are currently seen in 2D layers. Application as a 3D display for representation and visualization of Digital Terrain Model (DTM) and Digital Surface Models (DSM), where it can be applied in the identification of canyons in the marine area of the Campos Basin, Rio de Janeiro, Brazil. The same can execute visualization of regions subject to landslides, as in Serra do Mar - Agra dos Reis and Serranas cities both in the State of Rio de Janeiro. From the foregoing, loss of human life and leakage of oil from pipelines buried in these regions may be anticipated in advance. The physical design consists of a table consisting of a 9 x 16 matrix of servo motors, totalizing 144 servos, a mesh is used on the servo motors for visualization of the models projected by a retro projector. Each model for by an image pre-processing, is sent to a server to be converted and viewed from a software developed in C # Programming Language.Keywords: visualization, 3D models, servo motors, C# programming language
Procedia PDF Downloads 3427632 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India
Authors: Ajai Singh
Abstract:
Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation
Procedia PDF Downloads 3707631 Decoding Democracy's Notion in Aung San Suu Kyi's Speeches
Authors: Woraya Som-Indra
Abstract:
This article purposes to decode the notion of democracy embedded in the political speeches of Aung San Su Kyi by adopting critical discourse analysis approach, using Systemic Function Linguistics (SFL) and transitivity as a vital analytical tool. Two main objectives of the study are 1) to analyze linguistic strategies constituted the crucial characteristics of Su Kyi's political speeches by employing SFL and transitivity and 2) to examine ideology manifested the notion of democracy behind Su Kyi’s political speeches. The data consists of four speeches of Su Kyi delivering in different places within the year 2011 broadcasted through the website of US campaign for Burma. By employing linguistic tool and the concept of ideology as an analytical frame, the word choice selection found in the speeches assist explaining the manifestation of Su Kyi’s ideology toward democracy and power struggle. The finding revealed eight characters of word choice projected from Su Kyi’s political speeches, as follows; 1) support, hope and encouragement which render the recipients to uphold with the mutual aim to fight for democracy together and moving forwards for change and solution in the future, 2) aim and achievement evoke the recipients to attach with the purpose to fight for democracy, 3) challenge and change release energy to challenge the present political regime of Burma to change to the new political regime of democracy, 4) action, doing and taking signify the action and practical process to call for a new political regime, 5) struggle represents power struggle during the process of democracy requesting and it could refer to her long period of house arrest in Burma, 6) freedom implies what she has been long fighting for- to be released from house arrest, be able to access to the freedom of speech related to political ideology, and moreover, be able to speak out for the people of Burmese about their desirable political regime and political participation, 7) share and scarify call the recipients to have the spirit of shared value in the process of acquiring democracy, and 8) solution and achievement remind her recipients of what they have been long fighting for, and what could lead them to reach out the mutual achievement of a new political regime, i.e. democracy. Those word choice selections are plausible representation of democracy notion in Su Kyi’s terms. Due to her long journey of fighting for democracy in Burma, Suu Kyi’s political speeches always possess tremendously strong leadership characteristic, using words of wisdom and moreover, they are encoded with a wide range of words related to democracy ideology in order to push forward the future change into the Burma’s political regime.Keywords: Aung San Su Kyi’s speeches, critical discourse analysis, democracy ideology, systemic function linguistics, transitivity
Procedia PDF Downloads 2757630 Supplier Relationship Management and Selection Strategies: A Literature Review
Authors: Priyesh Kumar Singh, S. K. Sharma, Sanjay Verma, C. Samuel
Abstract:
Supplier Relationship Management (SRM), is strategic planning and managing of all interactions with suppliers to maximize its value. Its application varies from construction industries to healthcare system and investment banks to aviation industries. Several buyer-supplier relationship models, as well as supplier selection and evaluation strategies, have been documented by many academicians and researchers. In this paper, through a comprehensive literature review of over 30 published papers, different theoretical models, empirical data and conclusions were analysed relating to SRM to find its role in establishing better supplier relationships. These journal articles were searched by using the keyword “supplier relationship management,” in databases of Mendeley Library, ProQuest, EBSCO and Google Scholar. This paper reviews the academic literature on different relationship models, supplier evaluation, and selection strategies to discuss its implications in different situations. It also describes the dominant factors responsible for buyer-supplier relationships such trust and power. Finally, conclusions have been drawn which can be validated by various researchers and can help practitioners in industries.Keywords: supplier relationship management, supplier performance, supplier evaluation, supplier selection strategies
Procedia PDF Downloads 2817629 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting
Authors: Kourosh Modarresi
Abstract:
The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation
Procedia PDF Downloads 4557628 Contribution of Income Diversification to Total Rural Households Income in the Upper East Region, Ghana
Authors: Yakubu Abdulai, Kenichi Matsui
Abstract:
The agricultural industry has faced a variety of challenges in meeting the expanding income demand of the rural population. As a result, rural households must diversify their income sources to meet their income demand. Although income diversification strategies help rural households, it contributes to total household income, and the socio-demographic determinants are not known in the Upper East Region of Ghana. For these reasons, the purpose of this study was to determine the contribution of income diversification strategies to household income and the socio-demographic factors influencing it. We conducted a questionnaire survey among 360 rural households in the Upper East Region of Ghana. We asked about their socio-demographic information, their choice of income diversification strategies, and their remittances through rural-city migration. The questionnaire survey findings demonstrate that the main livelihood income source contributes 22%, and on-farm income diversification contributes the most to household total income (47%), followed by non-farm diversification income (16%) and off-farm diversification income (15%). Calculations from the income diversity index showed that the average income diversification strategy was 0.5 out of 1. The calculation of the income dependence index also showed that the average dependent on a particular source of income was 0.2 out of 1. All the respondents said household members temporarily migrate to contribute to household income through remittances. The results further reveal that their choice of income diversification is influenced by their age, educational background, experience, and farm size. The paper recommends the promotion of rural development policies that increase income-generating activities and educate rural households on how to increase returns from their investment.Keywords: income diversification, poverty alleviation, rural households, upper east region
Procedia PDF Downloads 1137627 Transition Economies, Typology, and Models: The Case of Libya
Authors: Abderahman Efhialelbum
Abstract:
The period since the fall of the Berlin Wall on November 9, 1989, and the collapse of the former Soviet Union in December 1985 has seen a major change in the economies and labour markets of Eastern Europe. The events also had reverberating effects across Asia and South America and parts of Africa, including Libya. This article examines the typologies and the models of transition economies. Also, it sheds light on the Libyan transition in particular and the impact of Qadhafi’s regime on the transition process. Finally, it illustrates how the Libyan transition process followed the trajectory of other countries using economic indicators such as free trade, property rights, and inflation.Keywords: transition, economy, typology, model, Libya
Procedia PDF Downloads 1577626 Teaching Physics: History, Models, and Transformation of Physics Education Research
Authors: N. Didiş Körhasan, D. Kaltakçı Gürel
Abstract:
Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.Keywords: pedagogy, physics, physics education, science education
Procedia PDF Downloads 2647625 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles
Authors: Siamack A. Shirazi, Farzin Darihaki
Abstract:
Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid
Procedia PDF Downloads 1697624 School Students’ Career Guidance in the Context of Inclusive Education in Kazakhstan: Experience and Perspectives
Authors: Laura Butabayeva, Svetlana Ismagulova, Gulbarshin Nogaibayeva, Maiya Temirbayeva, Aidana Zhussip
Abstract:
The article presents the main results of the study conducted within the grant project «Organizational and methodological foundations for ensuring the inclusiveness of school students’ career guidance» (2022-2024). The main aim of the project is to study the issue of the absence of developed mechanisms, coordinating the activities of all stakeholders in preparing school students for conscious career choice, taking into account their individual opportunities and special educational needs. To achieve the aim of the project, according to the implementation plan, the analysis of foreign and national literature on the studied problem, as well as the study of the state of school students’ career guidance and their socialization in the context of inclusive education were conducted, the international experience on this issue was explored. The analysis of the national literature conducted by the authors has shown the State’s annual increase in the number of students with special educational needs as well as the rapid demand of labour market, influencing their professional self-determination in modern society. The participants from 5 State’s regions, including students, their parents, general secondary schools administration and educators, as well as employers, took part in the study, taking into account the geographical location: south, north, west, centre, and the cities of republican significance. To ensure the validity of the study’s results, the triangulation method was utilised, including both qualitative and quantitative methods. The data were analysed independently and compared with each other. Ethical principles were considered during all stages of the study. The characteristics of the system of career guidance in the modern school, the role and the involvement of stakeholders in the system of career guidance, the opinions of educators on school students’ preparedness for career choice, and the factors impeding the effectiveness of career guidance in schools were examined. The problem of stakeholders’ disunity and inconsistency, causing the systemic labor market distortions, the growth of low-skilled labor, and the unemployed, including people with special educational needs, were revealed. The other issue identified by the researchers was educators’ insufficient readiness for students’ career choice preparation in the context of inclusive education. To study cutting-edge experience in organizing a system of career guidance for young people and develop mechanisms coordinating the actions of all stakeholders in preparing students for career choice, the institutions of career guidance in France, Japan, and Germany were explored by the researchers. To achieve the aim of the project, the systemic contemporary model of school students’ professional self-determination, considering their individual opportunities and special educational needs, has been developed based on the study results and international experience. The main principles of this model are consistency, accessibility, inclusiveness, openness, coherence, continuity. The perspectives of students’ career guidance development in the context of inclusive education have been suggested.Keywords: career guidance, inclusive education, model of school students’ professional self-determination, psychological and pedagogical support, special educational needs
Procedia PDF Downloads 537623 Third Party Logistics (3PL) Selection Criteria for an Indian Heavy Industry Using SEM
Authors: Nadama Kumar, P. Parthiban, T. Niranjan
Abstract:
In the present paper, we propose an incorporated approach for 3PL supplier choice that suits the distinctive strategic needs of the outsourcing organization in southern part of India. Four fundamental criteria have been used in particular Performance, IT, Service and Intangible. These are additionally subdivided into fifteen sub-criteria. The proposed strategy coordinates Structural Equation Modeling (SEM) and Non-additive Fuzzy Integral strategies. The presentation of fluffiness manages the unclearness of human judgments. The SEM approach has been used to approve the determination criteria for the proposed show though the Non-additive Fuzzy Integral approach uses the SEM display contribution to assess a supplier choice score. The case organization has a exclusive vertically integrated assembly that comprises of several companies focusing on a slight array of the value chain. To confirm manufacturing and logistics proficiency, it significantly relies on 3PL suppliers to attain supply chain superiority. However, 3PL supplier selection is an intricate decision-making procedure relating multiple selection criteria. The goal of this work is to recognize the crucial 3PL selection criteria by using the non-additive fuzzy integral approach. Unlike the outmoded multi criterion decision-making (MCDM) methods which frequently undertake independence among criteria and additive importance weights, the nonadditive fuzzy integral is an effective method to resolve the dependency among criteria, vague information, and vital fuzziness of human judgment. In this work, we validate an empirical case that engages the nonadditive fuzzy integral to assess the importance weight of selection criteria and indicate the most suitable 3PL supplier.Keywords: 3PL, non-additive fuzzy integral approach, SEM, fuzzy
Procedia PDF Downloads 2807622 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 4567621 Kantian Epistemology in Examination of the Axiomatic Principles of Economics: The Synthetic a Priori in the Economic Structure of Society
Authors: Mirza Adil Ahmad Mughal
Abstract:
Transcendental analytics, in the critique of pure reason, combines space and time as conditions of the possibility of the phenomenon from the transcendental aesthetic with the pure magnitude-intuition notion. The property of continuity as a qualitative result of the additive magnitude brings the possibility of connecting with experience, even though only as a potential because of the a priori necessity from assumption, as syntheticity of the a priori task of a scientific method of philosophy given by Kant, which precludes the application of categories to something not empirically reducible to the content of such a category's corresponding and possible object. This continuity as the qualitative result of a priori constructed notion of magnitude lies as a fundamental assumption and property of, what in Microeconomic theory is called as, 'choice rules' which combine the potentially-empirical and practical budget-price pairs with preference relations. This latter result is the purest qualitative side of the choice rules', otherwise autonomously, quantitative nature. The theoretical, barring the empirical, nature of this qualitative result is a synthetic a priori truth, which, if at all, it should be, if the axiomatic structure of the economic theory is held to be correct. It has a potentially verifiable content as its possible object in the form of quantitative price-budget pairs. Yet, the object that serves the respective Kantian category is qualitative itself, which is utility. This article explores the validity of Kantian qualifications for this application of 'categories' to the economic structure of society.Keywords: categories of understanding, continuity, convexity, psyche, revealed preferences, synthetic a priori
Procedia PDF Downloads 997620 Real Estate Trend Prediction with Artificial Intelligence Techniques
Authors: Sophia Liang Zhou
Abstract:
For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.Keywords: linear regression, random forest, artificial neural network, real estate price prediction
Procedia PDF Downloads 1037619 Jurisdictional Issues between Competition Law and Data Protection Law in Protection of Privacy of Online Consumers
Authors: Pankhudi Khandelwal
Abstract:
The revenue models of digital giants such as Facebook and Google, use targeted advertising for revenues. Such a model requires huge amounts of consumer data. While the data protection law deals with the protection of personal data, however, this data is acquired by the companies on the basis of consent, performance of a contract, or legitimate interests. This paper analyses the role that competition law can play in evading these loopholes for the protection of data and privacy of online consumers. Digital markets have certain distinctive features such as network effects and feedback loop, which gives incumbents of these markets a first-mover advantage. This creates a situation where the winner takes it all, thus creating entry barriers and concentration in the market. It has been also seen that this dominant position is then used by the undertakings for leveraging in other markets. This can be harmful to the consumers in form of less privacy, less choice, and stifling innovation, as seen in the cases of Facebook Cambridge Analytica, Google Shopping, and Google Android. Therefore, the article aims to provide a legal framework wherein the data protection law and competition law can come together to provide a balance in regulating digital markets. The issue has become more relevant in light of the Facebook decision by German competition authority, where it was held that Facebook had abused its dominant position by not complying with data protection rules, which constituted an exploitative practice. The paper looks into the jurisdictional boundaries that the data protection and competition authorities can work from and suggests ex ante regulation through data protection law and ex post regulation through competition law. It further suggests a change in the consumer welfare standard where harm to privacy should be considered as an indicator of low quality.Keywords: data protection, dominance, ex ante regulation, ex post regulation
Procedia PDF Downloads 1837618 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models
Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows
Abstract:
Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis
Procedia PDF Downloads 1577617 ‘Non-Legitimate’ Voices as L2 Models: Towards Becoming a Legitimate L2 Speaker
Authors: M. Rilliard
Abstract:
Based on a Multiliteracies-inspired and sociolinguistically-informed advanced French composition class, this study employed autobiographical narratives from speakers traditionally considered non-legitimate models for L2 teaching purposes of inspiring students to develop an authentic L2 voice and to see themselves as legitimate L2 speakers. Students explored their L2 identities in French through a self-inspired fictional character. Two autobiographical narratives of identity quest by non-traditional French speakers provided them guidance through this process: the novel Le Bleu des Abeilles (2013) and the film Qu’Allah Bénisse la France (2014). Written and French oral productions for different genres, as well as metalinguistic reflections in English, were collected and analyzed. Results indicate that ideas and materials that were relatable to students, namely relatable experiences and relatable language, were most useful to them in developing their L2 voices and achieving authentic and legitimate L2 speakership. These results point towards the benefits of using non-traditional speakers as pedagogical models, as they serve to legitimize students’ sense of their own L2-speakership, which ultimately leads them towards a better, more informed, mastery of the language.Keywords: foreign language classroom, L2 identity, L2 learning and teaching, L2 writing, sociolinguistics
Procedia PDF Downloads 1337616 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD
Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik
Abstract:
The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet
Procedia PDF Downloads 5717615 Task Scheduling and Resource Allocation in Cloud-based on AHP Method
Authors: Zahra Ahmadi, Fazlollah Adibnia
Abstract:
Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow
Procedia PDF Downloads 1457614 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 757613 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia PDF Downloads 1817612 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 4417611 Modelling Volatility of Cryptocurrencies: Evidence from GARCH Family of Models with Skewed Error Innovation Distributions
Authors: Timothy Kayode Samson, Adedoyin Isola Lawal
Abstract:
The past five years have shown a sharp increase in public interest in the crypto market, with its market capitalization growing from $100 billion in June 2017 to $2158.42 billion on April 5, 2022. Despite the outrageous nature of the volatility of cryptocurrencies, the use of skewed error innovation distributions in modelling the volatility behaviour of these digital currencies has not been given much research attention. Hence, this study models the volatility of 5 largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Tether, Binance coin, and USD Coin) using four variants of GARCH models (GJR-GARCH, sGARCH, EGARCH, and APARCH) estimated using three skewed error innovation distributions (skewed normal, skewed student- t and skewed generalized error innovation distributions). Daily closing prices of these currencies were obtained from Yahoo Finance website. Finding reveals that the Binance coin reported higher mean returns compared to other digital currencies, while the skewness indicates that the Binance coin, Tether, and USD coin increased more than they decreased in values within the period of study. For both Bitcoin and Ethereum, negative skewness was obtained, meaning that within the period of study, the returns of these currencies decreased more than they increased in value. Returns from these cryptocurrencies were found to be stationary but not normality distributed with evidence of the ARCH effect. The skewness parameters in all best forecasting models were all significant (p<.05), justifying of use of skewed error innovation distributions with a fatter tail than normal, Student-t, and generalized error innovation distributions. For Binance coin, EGARCH-sstd outperformed other volatility models, while for Bitcoin, Ethereum, Tether, and USD coin, the best forecasting models were EGARCH-sstd, APARCH-sstd, EGARCH-sged, and GJR-GARCH-sstd, respectively. This suggests the superiority of skewed Student t- distribution and skewed generalized error distribution over the skewed normal distribution.Keywords: skewed generalized error distribution, skewed normal distribution, skewed student t- distribution, APARCH, EGARCH, sGARCH, GJR-GARCH
Procedia PDF Downloads 1197610 A Study on Finite Element Modelling of Earth Retaining Wall Anchored by Deadman Anchor
Authors: K. S. Chai, S. H. Chan
Abstract:
In this paper, the earth retaining wall anchored by discrete deadman anchor to support excavations in sand is modelled and analysed by finite element analysis. A study is conducted to examine how deadman anchorage system helps in reducing the deflection of earth retaining wall. A simplified numerical model is suggested in order to reduce the simulation duration. A comparison between 3-D and 2-D finite element analyses is illustrated.Keywords: finite element, earth retaining wall, deadman anchor, sand
Procedia PDF Downloads 4827609 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 907608 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA
Procedia PDF Downloads 1347607 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1947606 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame
Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi
Abstract:
The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame
Procedia PDF Downloads 2767605 Effect of Soil Corrosion in Failures of Buried Gas Pipelines
Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur
Abstract:
In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.Keywords: corrosion, pit depth, sensitivity analysis, exposure period
Procedia PDF Downloads 5307604 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs
Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle
Abstract:
Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.Keywords: meteorological data, Washington D.C., DCNet data, NAM model
Procedia PDF Downloads 234