Search results for: discrete Fourier transformation
1976 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field
Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna
Abstract:
The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.Keywords: diffuser, ejector, flow, fluent
Procedia PDF Downloads 4351975 The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄
Authors: Burcu Kiren, Alattin CAkan, Nezihe Ayas
Abstract:
Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite.Keywords: sodium borohydride, hydrolysis, catalyst, Ni/dolomite, hydrogen
Procedia PDF Downloads 1661974 Biosorption of Fluoride from Aqueous Solutions by Tinospora Cordifolia Leaves
Authors: Srinivasulu Dasaiah, Kalyan Yakkala, Gangadhar Battala, Pavan Kumar Pindi, Ramakrishna Naidu Gurijala
Abstract:
Tinospora cordifolia leaves biomass used for the removal fluoride from aqueous solutions. Batch biosorption technique was applied, pH, contact time, biosorbent dose and initial fluoride concentration was studied. The Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) techniques used to study the surface characteristics and the presence of chemical functional groups on the biosorbent. Biosorption isotherm models and kinetic models were applied to understand the sorption mechanism. Results revealed that pH, contact time, biosorbent dose and initial fluoride concentration played a significant effect on fluoride removal from aqueous solutions. The developed biosorbent derived from Tinospora cordifolia leaves biomass found to be a low-cost biosorbent and could be used for the effective removal of fluoride in synthetic as well as real water samples.Keywords: biosorption, contact time, fluoride, isotherms
Procedia PDF Downloads 1771973 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities
Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis
Abstract:
This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes
Procedia PDF Downloads 2811972 Delivering on Infrastructure Maintenance for Socio-Economic Growth: Exploration of South African Infrastructure for a Sustained Maintenance Strategy
Authors: Deenadayalan Govender
Abstract:
In South Africa, similar to nations globally, the prevailing tangible link between people and the state is public infrastructure. Services delivered through infrastructure to the people and to the state form a critical enabler for social development in communities and economic development in the country. In this regard, infrastructure, being the backbone to a nation’s prosperity, ideally should be effectively maintained for seamless delivery of services. South African infrastructure is in a state of deterioration, which is leading to infrastructure dysfunction and collapse and is negatively affecting development of the economy. This infrastructure deterioration stems from deficiencies in maintenance practices and strategies. From the birth of South African democracy, government has pursued socio-economic transformation and the delivery of critical basic services to decrease the broadening boundaries of disparity. In this regard, the National Infrastructure Plan borne from strategies encompassed in the National Development Plan is given priority by government in delivering strategic catalytic infrastructure projects. The National Infrastructure Plan is perceived to be the key in unlocking opportunities that generate economic growth, kerb joblessness, alleviate poverty, create new entrepreneurial prospects, and mitigate population expansion and rapid urbanisation. Socio-economic transformation benefits from new infrastructure spend is not being realised as initially anticipated. In this context, South Africa is currently in a state of weakening economic growth, with further amassed levels of joblessness, unremitting poverty and inequality. Due to investor reluctance, solicitation of strategic infrastructure funding is progressively becoming a debilitating challenge in all government institutions. Exacerbating these circumstances further, is substandard functionality of existing infrastructure subsequent to inadequate maintenance practices. This in-depth multi-sectoral study into the state of infrastructure is to understand the principal reasons for infrastructure functionality regression better; furthermore, prioritised investigations into progressive maintenance strategies is focused upon. Resultant recommendations reveal enhanced maintenance strategies, with a vision to capitalize on infrastructure design life, and also give special emphasis to socio-economic development imperatives in the long-term. The research method is principally based on descriptive methods (survey, historical, content analysis, qualitative).Keywords: infrastructure, maintenance, socio-economic, strategies
Procedia PDF Downloads 1401971 Study of Biodegradable Composite Materials Based on Polylactic Acid and Vegetal Reinforcements
Authors: Manel Hannachi, Mustapha Nechiche, Said Azem
Abstract:
This study focuses on biodegradable materials made from Poly-lactic acid (PLA) and vegetal reinforcements. Three materials are developed from PLA, as a matrix, and : (i) olive kernels (OK); (ii) alfa (α) short fibers and (iii) OK+ α mixture, as reinforcements. After processing of PLA pellets and olive kernels in powder and alfa stems in short fibers, three mixtures, namely PLA-OK, PLA-α, and PLA-OK-α are prepared and homogenized in Turbula®. These mixtures are then compacted at 180°C under 10 MPa during 15 mn. Scanning Electron Microscopy (SEM) examinations show that PLA matrix adheres at surface of all reinforcements and the dispersion of these ones in matrix is good. X-ray diffraction (XRD) analyses highlight an increase of PLA inter-reticular distances, especially for the PLA-OK case. These results are explained by the dissociation of some molecules derived from reinforcements followed by diffusion of the released atoms in the structure of PLA. This is consistent with Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis results.Keywords: alfa short fibers, biodegradable composite, olive kernels, poly-lactic acid
Procedia PDF Downloads 1471970 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 2031969 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials
Authors: Memet Vezir Kahraman, Ferhat Sen
Abstract:
This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate
Procedia PDF Downloads 1601968 The Tadpole-Shaped Polypeptides with Two Regulable (Alkyl Chain) Tails
Abstract:
The biocompatible tadpole-shaped polypeptides with one cyclic polypeptides ring and two alkyl chain tails were synthesized by N-heterocyclic carbine (NHC)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). First, the NHC precursor, denoted as [NHC(H)][HCO₃], with two alkyl chains at the nitrogen was prepared by a simple anion metathesis of imidazole(in)ium chlorides with KHCO₃. Then NHC releasing from the [NHC(H)][HCO₃] directly initiated the ROP of NCA to produce the cyclic polypeptides. Finally, the tadpole-shaped polypeptides with two regulable tails were obtained. The target polypeptides were characterized by nuclear magnetic resonance spectrum (1H NMR), Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization-time of flight mass spectra (MALDI-TOF MS). This pioneering approach simplifies the synthesis procedures of tadpole-shaped polypeptides compared to other methods, which usually requires specific intramolecular ring-closure reaction.Keywords: cyclic polypeptides, α-amino acid N-carboxyanhydrides, N-heterocyclic carbene, ring-opening polymerization, tadpole-shaped
Procedia PDF Downloads 2051967 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers
Authors: Nivedha Rajaram
Abstract:
Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph
Procedia PDF Downloads 1271966 Early Detection of Major Earthquakes Using Broadband Accelerometers
Authors: Umberto Cerasani, Luca Cerasani
Abstract:
Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.Keywords: earthquake, accelerometer, earthquake forecasting, seism
Procedia PDF Downloads 1441965 Synthesis and Characterization of Nano-Alumina Using Neem Oil as the Template for Efficient Hydrogen Generation via Photo-Hydrolysis of Sodium Borohydride
Authors: Dina M. Abd El-Aty, D. Aman, E. G. Zaki, Heba M. Salem
Abstract:
A friendly environmental source of energy as hydrogen was produced by photo-hydrolysis of hydrogen storage material as sodium borohydride (NaBH4), which is non-toxic and stores a high percentage of hydrogen. The photoreaction was produced under visible light and nano-alumina as a catalyst. In this study, we use more economical and friendly environmental oil as a template to produce a nano-catalyst. The prepared catalyst was characterized by X-Ray diffraction, N2-adsorption-desorption, Fourier Transforms Infrared, Scanning Electron microscope and X-Ray Photoelectron Spectroscopy. Different parameters such as catalyst weight, NaBH4 weight and time of irradiation were studied to obtain a highly efficient photo-hydrolysis reaction. The reaction is pseudo-first order and the hydrogen production rate was determined as 1500 ml min-1 g-1 at the optimum conditions.Keywords: photo-reaction, nano-alumina, hydrogen production, sodium borohydride, visible light
Procedia PDF Downloads 831964 The Tragedy of Colonialism in Non-colonised Society: Italy’s Historical Narratives and the Amhara Genocide in Ethiopia
Authors: Birhanu Bitew Geremew
Abstract:
In its attempt to colonize Ethiopia, Italy challenged the nationalism of Ethiopiawinet, claiming that Ethiopia is a mere collection of discrete ethnic groups brought together by Amhara colonialism. Extracting data from a variety of sources including secondary materials, opinions expressed in the broadcast, print and social media platforms, party documents, official letters and key informant interviews, this paper provides a critical reflection on how the colonial presence of Italy made a political mess in Ethiopia by asserting ethnic nationalism. The paper argues that the narratives invented by the Italians greatly contributed to the emergence of ethnic nationalism following the advent of Marxism-Leninism in Ethiopia. Borrowing narratives from the Italians, Ethiopian ethnic elites of the 1960s, who were the advocates of Marxism, simplistically categorized the Amhara as oppressor while ‘others’ as oppressed in Leninist fashion. This categorization negatively shaped the attitude of ‘others’ towards the Amhara and instigated massively executed genocide against these people.Keywords: Amhara colonialism, Ethiopia, Genocide, historical narratives, Marxism
Procedia PDF Downloads 3171963 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method
Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh
Abstract:
Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model
Procedia PDF Downloads 3521962 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption
Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa
Abstract:
The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential
Procedia PDF Downloads 1211961 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives
Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton
Abstract:
Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.Keywords: hydrogel, metal ions, nanowire, nucleoside
Procedia PDF Downloads 2651960 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 3691959 Effect of Scalping on the Mechanical Behavior of Coarse Soils
Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane
Abstract:
This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.Keywords: coarse soils, mechanical behavior, scalping, replacement, triaxial devices
Procedia PDF Downloads 2071958 Effects of Different Calcination Temperature on the Geopolymerization of Fly Ash
Authors: Nurcan Tugrul, Funda Demir, Hilal Ozkan, Nur Olgun, Emek Derun
Abstract:
Geopolymers are aluminosilicate-containing materials. The raw materials of the geopolymerization can be natural material such as kaolinite, metakaolin (calcined kaolinite), clay, diatomite, rock powder or can also be industrial by-products such as fly ash, silica fume, blast furnace slag, rice-husk ash, mine tailing, red mud, waste slag, etc. Reactivity of raw materials in geopolymer production is very important for achieving high reaction grade. Fly ash used in geopolymer production has been calcined to obtain tetrahedral SiO₂ and Al₂O₃ structures. In this study, fly ash calcined at different temperatures (700, 800 and 900 °C), and Al₂O₃ addition (Al₂O₃ at min (0%) and max (100%)) were used to produce geopolymers. HCl dissolution method was applied to determine the geopolymerization percentage of samples and Fourier Transform Infrared (FTIR) Spectroscopy was used to find out the optimum calcination temperature for geopolymerization. According to obtained results, the highest geopolymerization percentage (0% alumina added geopolymer equal to 35.789%; 100% alumina added geopolymer equal to 40.546%) was obtained in samples using fly ash calcined at 800 °C.Keywords: geopolymer, fly ash, Al₂O₃ addition, calcination
Procedia PDF Downloads 1771957 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence
Procedia PDF Downloads 4211956 Removal of Methyl Green by an Algerian Calcic Clay
Authors: Feddal Imene, Boumediene Youssra, Mimanne Goussem
Abstract:
The history of the environment and its chemistry is above all the history of its pollution. For a large part, it is the changes made in the air, water and soil by human beings. From there, we can define that pollution is an unfavorable modification of the natural environment that appears as a by-product of human action, through direct and indirect effects. The protection and preservation of the environment is one of the pillars of sustainable development, which is currently a major issue for the future of man and the planet. Currently, humanity is facing an alarming increase in the pollution of the natural environment by various organic or inorganic materials. The objective of our work is to study the adsorption of a textile dye which is known in the industrial environment, methyl green, on raw calcic clay. Our material was characterized by X-ray diffraction (XRD) Fourier transform infrared (FTIR), we also determined its cation exchange capacity (CEC), pHzc and specific surface by Methylene Blue method. The kinetic and thermodynamic study of the adsorption of methyl green was studied, these experiments resulted that the adsorption of the dye follows pseudo second order kinetics, and according to the thermodynamic study and the study of the probability we can say that we have a physisorption.Keywords: calcic clay, dye, materials, environment
Procedia PDF Downloads 571955 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources
Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou
Abstract:
The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test
Procedia PDF Downloads 1021954 Effect of Polyethylene Glycol on Physiochemical Properties of Spherical Agglomerates of Pioglitazone Hydrochloride
Authors: S. V. Patil , S. K. Sahoo, K. Y. Chougule, S. S. Patil
Abstract:
Spherically agglomerated crystals of Pioglitazone hydrochloride (PGH) with improved flowability and compactibility were successfully prepared by emulsion solvent diffusion method. Plane agglomerates and agglomerates with additives: polyethylene glycol 6000 (PEG), polyvinyl pyrrolidone (PVP) and β cyclodextrin (β-CD) were prepared using methanol, chloroform and water as good solvent, bridging liquid and poor solvent respectively. Particle size, flowability, compactibility and packability of plane, PEG and β-CD agglomerates were preferably improved for direct tableting compared with raw crystals and PVP agglomerates of PGH. These improved properties of spherically agglomerated crystals were due to their large and spherical shape and enhanced fragmentation during compaction which was well supported by increased tensile strength and less elastic recovery of its compact. X-ray powder diffraction and differential scanning calorimetry study were indicated polymorphic transition of PGH from form II to I during recrystallization but not associated with chemical transition indicated by fourier transforms infrared spectra.Keywords: spherical crystallization, pioglitazone hydrochloride, compactibility, packability
Procedia PDF Downloads 3561953 Induced-Gravity Inflation in View of the Bicep2 Results
Authors: C. Pallis
Abstract:
Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential.Keywords: cosmology, supersymmetric models, supergravity, modified gravity
Procedia PDF Downloads 7151952 Hospital 4.0 Maturity Assessment Model Development: Case of Moroccan Public Hospitals
Authors: T. Benazzouz, K. Auhmani
Abstract:
This paper presents a Hospital 4.0 Maturity Assessment Model based on the Industry 4.0 concepts. The self-assessment model defines current and target states of digital transformation by considering multiple aspects of a hospital and a healthcare supply chain. The developed model was validated and evaluated on real-life cases. The resulting model consisted of 5 domains: Technology, Strategy 4.0, Human resources 4.0 & Culture 4.0, Supply chain 4.0 management, and Patient journeys management. Each domain is further divided into several sub-domains, totally 34 sub-domains are identified, that reflect different facets of a hospital 4.0 mature organization.Keywords: hospital 4.0, Industry 4.0, maturity assessment model, supply chain 4.0, patient
Procedia PDF Downloads 901951 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 751950 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater
Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić
Abstract:
Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide
Procedia PDF Downloads 2661949 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment
Authors: M. Riaz, Inamur Rehman, Abhishek Sharma
Abstract:
The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.Keywords: thermal diffusivity, skin temperature, precooling, forced convection, regular shaped
Procedia PDF Downloads 4591948 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical
Authors: Seyedmahdi Mousavihashemi
Abstract:
Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.Keywords: biomedical engineering, nano composite, SEM, TEM
Procedia PDF Downloads 2381947 Shakespeare's Hamlet in Ballet: Transformation of an Archival Recording of a Neoclassical Ballet Performance into a Contemporary Transmodern Dance Video Applying Postmodern Concepts and Techniques
Authors: Svebor Secak
Abstract:
This four-year artistic research project hosted by the University of New England, Australia has set the goal to experiment with non-conventional ways of presenting a language-based narrative in dance using insights of recent theoretical writing on performance, addressing the research question: How to transform an archival recording of a neoclassical ballet performance into a new artistic dance video by implementing postmodern philosophical concepts? The Creative Practice component takes the form of a dance video Hamlet Revisited which is a reworking of the archival recording of the neoclassical ballet Hamlet, augmented by new material, produced using resources, technicians and dancers of the Croatian National Theatre in Zagreb. The methodology for the creation of Hamlet Revisited consisted of extensive field and desk research after which three dancers were shown the recording of original Hamlet and then created their artistic response to it based on their reception and appreciation of it. The dancers responded differently, based upon their diverse dancing backgrounds and life experiences. They began in the role of the audience observing video of the original ballet and transformed into the role of the choreographer-performer. Their newly recorded material was edited and juxtaposed with the archival recording of Hamlet and other relevant footage, allowing for postmodern features such as aleatoric content, synchronicity, eclecticism and serendipity, that way establishing communication on a receptive reader-response basis, thus blending the roles of the choreographer, performer and spectator, creating an original work of art whose significance lies in the relationship and communication between styles, old and new choreographic approaches, artists and audiences and the transformation of their traditional roles and relationships. In editing and collating, the following techniques were used with the intention to avoid the singular narrative: fragmentation, repetition, reverse-motion, multiplication of images, split screen, overlaying X-rays, image scratching, slow-motion, freeze-frame and simultaneity. Key postmodern concepts considered were: deconstruction, diffuse authorship, supplementation, simulacrum, self-reflexivity, questioning the role of the author, intertextuality and incredulity toward grand narratives - departing from the original story, thus personalising its ontological themes. From a broad brush of diverse concepts and techniques applied in an almost prescriptive manner, the project focuses on intertextuality that proves to be valid on at least two levels. The first is the possibility of a more objective analysis in combination with a semiotic structuralist approach moving from strict relationships between signs to a multiplication of signifiers, considering the dance text as an open construction, containing the elusive and enigmatic quality of art that leaves the interpretive position open. The second one is the creation of the new work where the author functions as the editor, aware and conscious of the interplay of disparate texts and their sources which co-act in the mind during the creative process. It is argued here that the eclectic combination of the old and new material through constant oscillations of different discourses upon the same topic resulted in a transmodern integrationist recent work of art that might be applied as a model for reconsidering existing choreographic creations.Keywords: Ballet Hamlet, intertextuality, transformation, transmodern dance video
Procedia PDF Downloads 257