Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5903

Search results for: artificial stock market

4733 Evaluating the Relationship between Overconfidence of Senior Managers and Abnormal Cash Fluctuations with Respect to Financial Flexibility in Companies Listed in Tehran Stock Exchange

Authors: Hadi Mousavi, Majid Davoudi Nasr

Abstract:

Executives can maximize profits by recognizing the factors that affect investment and using them to obtain the optimal level of investment. Inefficient markets have shortcomings that can impact the optimal level of investment, leading to the process of over-investment or under-investment. In the present study, the relationship between the overconfidence of senior managers and abnormal cash fluctuations with respect to financial flexibility in companies listed in the Tehran stock exchange from 2009 to 2013 were evaluated. In this study, the sample consists of 84 companies selected by a systematic elimination method and 420 year-companies in total. In this research, EVIEWS software was used to test the research hypotheses by linear regression and correlation coefficient and after designing and testing the research hypothesis. After designing and testing research hypotheses that have been used to each hypothesis, it was concluded that there was a significant relationship between the overconfidence of senior managers and abnormal cash fluctuations, and this relationship was not significant at any level of financial flexibility. Moreover, the findings of the research showed that there was a significant relationship between senior manager’s overconfidence and positive abnormal cash flow fluctuations in firms, and this relationship is significant only at the level of companies with high financial flexibility. Finally, the results indicate that there is no significant relationship between senior managers 'overconfidence and negative cash flow abnormalities, and the relationship between senior managers' overconfidence and negative cash flow fluctuations at the level of companies with high financial flexibility was confirmed.

Keywords: abnormal cash fluctuations, overconfidence of senior managers, financial flexibility, accounting

Procedia PDF Downloads 131
4732 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study

Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah

Abstract:

This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.

Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language

Procedia PDF Downloads 33
4731 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling

Authors: Ghita Benayad

Abstract:

Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.

Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market

Procedia PDF Downloads 47
4730 Toxicity of Cry1ac Bacillus thuringiensis against Helicoverpa armigera (Hubner) on Artificial Diet under Laboratory Conditions

Authors: Tahammal Hussain, Khuram Zia, Mumammad Jalal Arif, Megha Parajulee, Abdul Hakeem

Abstract:

The Bioassay on neonate, 2nd and 3rd instar larvae of Helicoverpa armigera (Hubner) were conducted against Bacillus thuringiensis proteins Cry1Ac. Cry1Ac was incorporated into an artificial diet and was serially diluted with distilled water and then mixed with diet at an appropriate temperature of diet. Toxins incorporated prepared diet was poured into Petri-dishes. For controls, distilled water was mixed with the diet. Five toxin doses 0.25, 0.5, 1, 2, and 4 ug / ml and one control were used for each instars of H. armigera 20 larvae were used in each replication and each treatment is replicated four times. LC50 of Cry1Ac against neonate, 2nd and 3rd instar larvae of H. armigera were 0.34, 0.81 and 1.46 ug / ml. So Cry1Ac is more effective against neonate larvae of H .armigera as compared to 2nd and 3rd instar larvae under laboratory conditions.

Keywords: B. thuringiensis, Cry1Ac, H. armigera, toxicity

Procedia PDF Downloads 413
4729 Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand

Authors: Mogeeb A. El-Sheikh

Abstract:

The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method.

Keywords: adaptable socket, prosthetic hand, transradial amputee, data glove

Procedia PDF Downloads 262
4728 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
4727 Testing Chat-GPT: An AI Application

Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi

Abstract:

ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.

Keywords: artificial Inelegance, chatGPT, open AI, NLP

Procedia PDF Downloads 77
4726 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks

Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher

Abstract:

Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.

Keywords: neural networks, rainfall, prediction, climatic variables

Procedia PDF Downloads 488
4725 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: cognition, world music, artificial intelligence, Thayer’s matrix

Procedia PDF Downloads 81
4724 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete

Authors: Gashaw Abebaw

Abstract:

Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.

Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan

Procedia PDF Downloads 120
4723 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence

Authors: Weber-Lewerenz Bianca

Abstract:

Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.

Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation

Procedia PDF Downloads 250
4722 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis

Procedia PDF Downloads 131
4721 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services

Authors: Roberto Feltrero, Sara Osuna-Acedo

Abstract:

Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.

Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation

Procedia PDF Downloads 90
4720 Digital Platforms: Creating Value through Network Effects under Pandemic Conditions

Authors: S. Łęgowik-Świącik

Abstract:

This article is a contribution to the research into the determinants of value creation via digital platforms in variable operating conditions. The dynamics of the market environment caused by the COVID-19 pandemic have made enterprises built on digital platforms financially successful. While many classic companies are struggling with the uncertainty of conducting a business and difficulties in the process of value creation, digital platforms create value by modifying the existing business model to meet the changing needs of customers. Therefore, the objective of this publication is to understand and explain the relationship between value creation and the conversion of the business model built on digital platforms under pandemic conditions. The considerations relating to the conceptual framework and determining the research objective allowed for adopting the hypothesis, assuming that the processes of value creation are evolving, and the measurement of these processes allows for the protection of value created and enables its growth in changing circumstances. The research methods, such as critical literature analysis and case study, were applied to accomplish the objective pursued and verify the hypothesis formulated. The empirical research was carried out based on the data from enterprises listed on the Nasdaq Stock Exchange: Amazon, Alibaba, and Facebook. The research period was the years 2018-2021. The surveyed enterprises were chosen based on the targeted selection. The problem discussed is important and current since the lack of in-depth theoretical research results in few attempts to identify the determinants of value creation via digital platforms. The above arguments led to an attempt at theoretical analysis and empirical research to fill in the gap perceived by deepening the understanding of the process of value creation through network effects via digital platforms under pandemic conditions.

Keywords: business model, digital platforms, enterprise management, pandemic conditions, value creation process

Procedia PDF Downloads 128
4719 Attribution of Strategic Motive, Business Efficiencies, Firm Economies, and Market Factors as Motivations of Restaurant Industry Vertical Integration Adoption: A Structural Equation Model

Authors: Sy, Melecio Jr

Abstract:

The decision to adopt vertical integration (VI) is firm-specific, but there is a common practice among businesses in an industry to maximize the massive potential benefits of VI. This study aims to determine VI adoption in the restaurant industry in Davao City. Using a two-step sampling process, the study used a validated survey questionnaire among 264 restaurant owners and managers randomly selected and geographically classified. It is a quantitative study where the data were subjected to a structural equation model (SEM). The results revealed that VI is present but limited to procurement, production, restaurant services, and online marketing. Raw materials were outsourced while delivery to customers through third-party delivery services. VI slowly increased over ten years except for online marketing, which has grown significantly in a few years. The endogenous and exogenous variables were correlated and established the linear regression model. The SEM's best fit model revealed that strategic motives (SMOT) and market factors (MFAC) influenced VI adoption while MFAC is the best predictor. Favorable market factors may lead restaurants to adopt VI. It is, thus, recommended for restaurants to institutionalize strategic management, quantify the impact of double marginalization in future studies as a reason for VI and conduct this study during the new normal to see the influence of business efficiencies and firm economies on VI adoption.

Keywords: business efficiencies, business management, davao city, firm economies, market factors, philippines, strategic motives, structural equation model, supply chain, vertical integration adoption

Procedia PDF Downloads 70
4718 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 81
4717 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 100
4716 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384
4715 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 36
4714 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms

Authors: Atia Alam

Abstract:

Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.

Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms

Procedia PDF Downloads 357
4713 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 398
4712 Reproductive Biology and Lipid Content of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean

Authors: Zahirah Dhurmeea, Iker Zudaire, Heidi Pethybridge, Emmanuel Chassot, Maria Cedras, Natacha Nikolic, Jerome Bourjea, Wendy West, Chandani Appadoo, Nathalie Bodin

Abstract:

Scientific advice on the status of fish stocks relies on indicators that are based on strong assumptions on biological parameters such as condition, maturity and fecundity. Currently, information on the biology of albacore tuna, Thunnus alalunga, in the Indian Ocean is scarce. Consequently, many parameters used in stock assessment models for Indian Ocean albacore originate largely from other studied stocks or species of tuna. Inclusion of incorrect biological data in stock assessment models would lead to inappropriate estimates of stock status used by fisheries manager’s to establish future catch allowances. The reproductive biology of albacore tuna in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency, fecundity and fish condition. In addition, the total lipid content (TL) and lipid class composition in the gonads, liver and muscle tissues of female albacore during the reproductive cycle was investigated. A total of 923 female and 867 male albacore were sampled from 2013 to 2015. A bias in sex-ratio was found in favour of females with fork length (LF) <100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF at the vitellogenic 3 oocyte stage maturity threshold. Albacore spawn on average every 2.2 days within the spawning region and spawning months from November to January. Batch fecundity varied between 0.26 and 2.09 million eggs and the relative batch fecundity (mean  standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. Depending on the maturity stage, TL in ovaries ranged from 7.5 to 577.8 mg g-1 of wet weight (ww) with different proportions of phospholipids (PL), wax esters (WE), triacylglycerol (TAG) and sterol (ST). The highest TL were observed in immature (mostly TAG and PL) and spawning capable ovaries (mostly PL, WE and TAG). Liver TL varied from 21.1 to 294.8 mg g-1 (ww) and acted as an energy (mainly TAG and PL) storage prior to reproduction when the lowest TL was observed. Muscle TL varied from 2.0 to 71.7 g-1 (ww) in mature females without a clear pattern between maturity stages, although higher values of up to 117.3 g-1 (ww) was found in immature females. TL results suggest that albacore could be viewed predominantly as a capital breeder relying mostly on lipids stored before the onset of reproduction and with little additional energy derived from feeding. This study is the first one to provide new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually promote sustainability of the fishery.

Keywords: condition, size-at-maturity, spawning behaviour, temperate tuna, total lipid content

Procedia PDF Downloads 260
4711 Valuing Non-Market Environmental Benefits of the Biodiversity Conservation Project

Authors: Huynh Viet Khai, Mitsuyasu Yabe

Abstract:

The study investigated the economic value of biodiversity attributes that could provide policy-makers reliable information to estimate welfare losses due to biodiversity reductions and analyse the trade-off between biodiversity and economics. In order to obtain the non-market benefits of biodiversity conservation, an indirect utility function and willingness to pay for biodiversity attributes were applied using the approach of choice modelling with the analysis of conditional logit model. The study found that Mekong Delta residents accepted their willingness to pay for VND 913 monthly for a one percent increase in healthy vegetation, VND 360 for an additional mammal species and VND 2,440 to avoid the welfare losses of 100 local farmers.

Keywords: choice modelling, genetic resources, wetland conservation, marginal willingness to pay

Procedia PDF Downloads 327
4710 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".

Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.

Procedia PDF Downloads 316
4709 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed

Authors: Muga Moses

Abstract:

Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.

Keywords: African nightshade, growth, yield, shoot, gibberellins

Procedia PDF Downloads 88
4708 Quality of So-Called Organic Fertilizers in Vietnam's Market

Authors: Hoang Thi Quynh, Shima Kazuto

Abstract:

Organic farming is gaining interest in Vietnam. However, organic fertilizer production is not sufficiently regulated, resulting in unknown quality. This study investigated characteristics of so-called organic fertilizers in the Vietnam’s market and their mineralization in soil-plant system. We collected 15 commercial products (11 domestic and 4 imported) which labelled 'organic fertilizer' in the market to analyze nutrients composition. A 20 day-incubation experiment was carried on with 80 g sandy-textured soil, amended with the fertilizer at a rate of 109.4 mgN.kg⁻¹soil in 150 mL glass bottle at 25℃. We categorized them according to nutrients content and mineralization rate, and then selected 8 samples for cultivation experiment. The experiment was conducted by growing Komatsuna (Brassica campestris) in sandy-textured soil using an automatic watering apparatus in a greenhouse. The fertilizers were applied to the top one-third of the soil stratum at a rate of 200 mgN.kg⁻¹ soil. Our study also analyzed material flow of coffee husk compost in Central Highland of Vietnam. Total N, P, K, Ca, Mg and C: N ratio varied greatly cross the domestic products, whereas they were quite similar among the imported materials. The proportion of inorganic-N to T-N of domestic products was higher than 25% in 8 of 11 samples. These indicate that N concentration increased dramatically in most domestic products compared with their raw materials. Additionally, most domestic products contained less P, and their proportions of Truog-P to T-P were greatly different. These imply that some manufactures were interested in adjusting P concentration, but some ones were not. Furthermore, the compost was made by mixing with chemical substances to increase nutrients content (N, P), and also added construction surplus soil to gain weight before packing product to sell in the market as 'organic fertilizer'. There was a negative correlation between C:N ratio and mineralization rate of the fertilizers. There was a significant difference in N efficiency among the fertilizer treatments. N efficiency of most domestic products was higher than chemical fertilizer and imported organic fertilizers. These results suggest regulations on organic fertilizers production needed to support organic farming that is based on internationally accepted standards in Vietnam.

Keywords: inorganic N, mineralization, N efficiency, so-called organic fertilizers, Vietnam’s market

Procedia PDF Downloads 182
4707 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network

Procedia PDF Downloads 104
4706 Contextual Paper on Green Finance: Analysis of the Green Bonds Market

Authors: Dina H. Gabr, Mona A. El Bannan

Abstract:

With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.

Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance

Procedia PDF Downloads 120
4705 Artificial Insemination for Cattle and Carabaos in Bicol Region, Philippines: Its Implementation and Assessment

Authors: Lourdita Llanto

Abstract:

This study described and assessed the implementation of artificial insemination (AI) for cattle and carabaos in the Bicol Region, Philippines: Albay, Sorsogon and Camarines Sur. Three hundred respondents were interviewed. Results were analyzed using frequency counts, means, percentages and chi-square test. Semen samples from different stations were analyzed for motility, viability and morphology. T-test was used in semen quality evaluation. Provincial AI coordinators (PAIC) were male, averaging 59 years old, married, had college education, served in government service for 34 years, but as PAIC for 5.7 years. All had other designations. Mean AI operation was 11.33 years with annual support from the local government unit of Php76,666.67. AI technicians were males, married, with college education, and trained on AI. Problems were on mobility; inadequate knowledge of farmers in animal raising and AI; and lack of liquid nitrogen and frozen semen supply. There was 2.95 municipalities and breedable cattle/carabaos of 3,091.25 per AI technician. Mean number of artificially inseminated animals per AI technician for 2011 was 28.57 heads for carabaos and 8.64 heads for cattle. There was very low participation rate among farmers. Carabaos were 6.52 years with parity 1.53. Cattle were 5.61 years, with parity of 1.51. Semen quality significantly (p ≤ 0.05) deteriorated in normal and live sperm with storage and handling at the provincial and field stations. Breed, AI technicians practices and AI operation significantly affected conception rate. Mean conception rate was 57.62%.

Keywords: artificial insemination, carabao, parity, mother tanks, frozen semen

Procedia PDF Downloads 435
4704 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91