Search results for: artificial reasoning
1233 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling
Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo
Abstract:
Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery
Procedia PDF Downloads 781232 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware
Authors: Le Zhao, Alain Nogaret
Abstract:
We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses
Procedia PDF Downloads 4741231 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples
Authors: Ahmed S. Fayed, Umima M. Mansour
Abstract:
Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol
Procedia PDF Downloads 2191230 Religion: A Tool for Conflict Resolution and Peace in Nigerian Society
Authors: V. U. Onyemauwa
Abstract:
Conflicts have always been part of human societies. So long as there is interaction amongst individuals or societies, there are bound to be conflicts as a result of the fact that interests among individuals and societies vary. The issue of conflict has become one of the regular headlines in the daily news of the Nigerian and global media today. Nigerian polity has suffered from one conflict or another, ranging from religious, civil, political, cultural, regional and ethnic violence. It has been found out that, the most disturbing part of these acts of conflicts in Nigeria and around the globe is that most of them have traced their roots to religion. Even some perpetrators of these acts of conflicts most of the time justify their actions with religion, thereby wrongly making religion an object of conflict and violence. In this regard, the study seeks to project religion as a potent tool for conflict resolution because it has a way of permeating through the hearts of men. It has a special responsibility of identifying conflicts and proffer solutions. It also has to provide theological reasoning as to why and how these conflicts come about and how they can possibly be solved. Religious actors are known to contribute to the processes of structural reform necessary for the restoration of productive social relations and political stability after a period of conflict and human rights abuses. The study examines the modalities for projecting religious conflict management strategies in Nigeria using an analysis of relevant documents as well as Black’s Social Control Theory and Thomas-Kilmann’s Model of Conflict Management as its theoretical frameworks. It recommends for a religiously-based means of conflict resolution in Nigeria. Religious individuals and faith-based organisations, as carriers of religious ideas are implore to play active roles in conflict resolution and peace-building in Nigeria by creating conducive environment for peaceful talks, mediation and reconciliation. This will enhance social cohesion, provides solid foundation for peace, progress and development in the society.Keywords: conflict, peace, religion, resolution
Procedia PDF Downloads 3981229 Aristotelian Techniques of Communication Used by Current Affairs Talk Shows in Pakistan for Creating Dramatic Effect to Trigger Emotional Relevance
Authors: Shazia Anwer
Abstract:
The current TV Talk Shows, especially on domestic politics in Pakistan are following the Aristotelian techniques, including deductive reasoning, three modes of persuasion, and guidelines for communication. The application of “Approximate Truth is also seen when Talk Show presenters create doubts against political personalities or national issues. Mainstream media of Pakistan, being a key carrier of narrative construction for the sake of the primary function of national consensus on regional and extended public diplomacy, is failing the purpose. This paper has highlighted the Aristotelian communication methodology, its purposes and its limitations for a serious discussion, and its connection to the mistrust among the Pakistani population regarding fake or embedded, funded Information. Data has been collected from 3 Pakistani TV Talk Shows and their analysis has been made by applying the Aristotelian communication method to highlight the core issues. Paper has also elaborated that current media education is impaired in providing transparent techniques to train the future journalist for a meaningful, thought-provoking discussion. For this reason, this paper has given an overview of HEC’s (Higher Education Commission) graduate-level Mass Com Syllabus for Pakistani Universities. The idea of ethos, logos, and pathos are the main components of TV Talk Shows and as a result, the educated audience is lacking trust in the mainstream media, which eventually generating feelings of distrust and betrayal in the society because productions look like the genre of Drama instead of facts and analysis thus the line between Current Affairs shows and Infotainment has become blurred. In the last section, practical implication to improve meaningfulness and transparency in the TV Talk shows has been suggested by replacing the Aristotelian communication method with the cognitive semiotic communication approach.Keywords: Aristotelian techniques of communication, current affairs talk shows, drama, Pakistan
Procedia PDF Downloads 2041228 Engaging Students in Spatial Thinking through Design Education: Case Study of a Biomimicry Design Project in the Primary Classroom
Authors: Caiwei Zhu, Remke Klapwijk
Abstract:
Spatial thinking, a way of thinking based on the understanding and reasoning of spatial concepts and representations, is embedded in science, technology, engineering, arts, and mathematics (STEAM) learning. Aside from many studies that successfully used targeted training to improve students’ spatial thinking skills, few have closely examined how spatial thinking can be trained in classroom settings. Design and technology education, which receives increasing attention towards its integration into formal curriculums, inherently encompasses a wide range of spatial activities, such as constructing mental representations of design ideas, mentally transforming objects and materials to form designs, visually communicating design plans through annotated drawings, and creating 2D and 3D design artifacts. Among different design topics, biomimicry offers a unique avenue for students to recognize and analyze the shapes and structures in nature. By mapping the forms of plants and animals onto functions, students gain inspiration to solve human design challenges. This study is one of the first to highlight opportunities for training spatial thinking in a biomimicry design project for primary school students. Embracing methodological principles of educational design-based research, this case study is conducted along with iterations in the design of the intervention and collaboration with teachers. Data are harvested from small groups of 10- to 12-year-olds at an international school in the Netherlands. Classroom videos, semi-structured interviews with students, design drawings and artifacts, formative assessment, and the pre- and post-intervention spatial test triangulate evidence for students' spatial thinking. In addition to contributing to a theory of integrating spatial thinking in the primary curriculum, mechanisms underlying such improvement in spatial thinking are explored and discussed.Keywords: biomimicry, design and technology education, primary education, spatial thinking
Procedia PDF Downloads 761227 Accelerated Aging of Photopolymeric Material Used in Flexography
Authors: S. Mahovic Poljacek, T. Tomasegovic, T. Cigula, D. Donevski, R. Szentgyörgyvölgyi, S. Jakovljevic
Abstract:
In this paper, a degradation of the photopolymeric material (PhPM), used as printing plate in the flexography reproduction technique, caused by accelerated aging has been observed. Since the basis process for production of printing plates from the PhPM is a radical cross-linking process caused by exposing to UV wavelengths, the assumption was that improper storage or irregular handling of the PhPM plate can change the surface and structure characteristics of the plates. Results have shown that the aging process causes degradation in the structure and changes in the surface of the PhPM printing plate.Keywords: aging process, artificial treatment, flexography, photopolymeric material (PhPM)
Procedia PDF Downloads 3491226 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 511225 DFT Study of Hoogsteen-Type Base Pairs
Authors: N. Amraoui, D. Hammoutene
Abstract:
We have performed a theoretical study using dispersion-corrected Density Functional Methods to evaluate a variety of artificial nucleobases as candidates for metal-mediated Hoogsteen-type base pairs. We focus on A-M-T Hoogsteen-type base pair with M=Co(II), Ru(I), Ni(I). All calculations are performed using (ADF 09) program. Metal-mediated Hoogsteen-type base pairs are studied as drug candidates, their geometry optimizations are performed at ZORA/TZ2P/BLYP-D level. The molecular geometries and different energies as total energies, coordination energies, Pauli interactions, orbital interactions and electrostatic energies are determined.Keywords: chemistry, biology, density functional method, orbital interactions
Procedia PDF Downloads 2841224 Uncanny Orania: White Complicity as the Abject of the Discursive Construction of Racism
Authors: Daphne Fietz
Abstract:
This paper builds on a reflection on an autobiographical experience of uncanniness during fieldwork in the white Afrikaner settlement Orania in South Africa. Drawing on Kristeva’s theory of abjection to establish a theory of Whiteness which is based on boundary threats, it is argued that the uncanny experience as the emergence of the abject points to a moment of crisis of the author’s Whiteness. The emanating abject directs the author to her closeness or convergence with Orania's inhabitants, that is a reciprocity based on mutual Whiteness. The experienced confluence appeals to the author’s White complicity to racism. With recourse to Butler’s theory of subjectivation, the abject, White complicity, inhabits both the outside of a discourse on racism, and of the 'self', as 'I' establish myself in relation to discourse. In this view, the qualities of the experienced abject are linked to the abject of discourse on racism, or, in other words, its frames of intelligibility. It then becomes clear, that discourse on (overt) racism functions as a necessary counter-image through which White morality is established instead of questioned, because here, by White reasoning, the abject of complicity to racism is successfully repressed, curbed, as completely impossible in the binary construction. Hence, such discourse endangers a preservation of racism in its pre-discursive and structural forms as long as its critique does not encompass its own location and performance in discourse. Discourse on overt racism is indispensable to White ignorance as it covers underlying racism and pre-empts further critique. This understanding directs us towards a form of critique which does necessitate self-reflection, uncertainty, and vigilance, which will be referred to as a discourse of relationality. Such a discourse diverges from the presumption of a detached author as a point of reference, and instead departs from attachment, dependence, mutuality and embraces the visceral as a resource of knowledge of relationality. A discourse of relationality points to another possibility of White engagement with Whiteness and racism and further promotes a conception of responsibility, which allows for and highlights dispossession and relationality in contrast to single agency and guilt.Keywords: abjection, discourse, relationality, the visceral, whiteness
Procedia PDF Downloads 1581223 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN
Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu
Abstract:
Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network
Procedia PDF Downloads 1441222 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5721221 A Drawing Software for Designers: AutoCAD
Authors: Mayar Almasri, Rosa Helmi, Rayana Enany
Abstract:
This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions
Procedia PDF Downloads 1311220 The Development and Testing of Greenhouse Comprehensive Environment Control System
Authors: Mohammed Alrefaie, Yaser Miaji
Abstract:
Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.Keywords: greenhouse, control system, light intensity, comprehensive environment
Procedia PDF Downloads 4821219 Navigating the Integration of AI in High School Assessment: Strategic Implementation and Ethical Practice
Authors: Loren Clarke, Katie Reed
Abstract:
The integration of artificial intelligence (AI) in high school education assessment offers transformative potential, providing more personalized, timely, and accurate evaluations of student performance. However, the successful adoption of AI-driven assessment systems requires robust change management strategies to navigate the complexities and resistance that often accompany such technological shifts. This presentation explores effective methods for implementing AI in high school assessment, emphasizing the need for strategic planning and stakeholder engagement. Focusing on a case study of a Victorian high school, it will examine the practical steps taken to integrate AI into teaching and learning. This school has developed innovative processes to support academic integrity and foster authentic cogeneration with AI, ensuring that the technology is used ethically and effectively. By creating comprehensive professional development programs for teachers and maintaining transparent communication with students and parents, the school has successfully aligned AI technologies with their existing curricula and assessment frameworks. The session will highlight how AI has enhanced both formative and summative assessments, providing real-time feedback that supports differentiated instruction and fosters a more personalized learning experience. Participants will learn about best practices for managing the integration of AI in high school settings while maintaining a focus on equity and student-centered learning. This presentation aims to equip high school educators with the insights and tools needed to effectively manage the integration of AI in assessment, ultimately improving educational outcomes and preparing students for future success. Methodologies: The research is a case study of a Victorian high school to examine AI integration in assessments, focusing on practical implementation steps, ethical practices, and change management strategies to enhance personalized learning and assessment. Outcomes: This research explores AI integration in high school assessments, focusing on personalized evaluations, ethical use, and change management. A Victorian school case study highlights best practices to enhance assessments and improve student outcomes. Main Contributions: This research contributes by outlining effective AI integration in assessments, showcasing a Victorian school's implementation, and providing best practices for ethical use, change management, and enhancing personalized learning outcomes.Keywords: artificial intelligence, assessment, curriculum design, teaching and learning, ai in education
Procedia PDF Downloads 211218 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students
Authors: Durvi Yogesh Vagani
Abstract:
This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching
Procedia PDF Downloads 291217 Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%
Authors: Bachir Chemani, Rachid Halfaoui, Madani Maalem
Abstract:
The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments.Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.Keywords: elastic, cotton, processing, torsion
Procedia PDF Downloads 3871216 A Serious Game to Upgrade the Learning of Organizational Skills in Nursing Schools
Authors: Benoit Landi, Hervé Pingaud, Jean-Benoit Culie, Michel Galaup
Abstract:
Serious games have been widely disseminated in the field of digital learning. They have proved their utility in improving skills through virtual environments that simulate the field where new competencies have to be improved and assessed. This paper describes how we created CLONE, a serious game whose purpose is to help nurses create an efficient work plan in a hospital care unit. In CLONE, the number of patients to take care of is similar to the reality of their job, going far beyond what is currently practiced in nurse school classrooms. This similarity with the operational field increases proportionally the number of activities to be scheduled. Moreover, very often, the team of nurses is composed of regular nurses and nurse assistants that must share the work with respect to the regulatory obligations. Therefore, on the one hand, building a short-term planning is a complex task with a large amount of data to deal with, and on the other, good clinical practices have to be systematically applied. We present how reference planning has been defined by addressing an optimization problem formulation using the expertise of teachers. This formulation ensures the gameplay feasibility for the scenario that has been produced and enhanced throughout the game design process. It was also crucial to steer a player toward a specific gaming strategy. As one of our most important learning outcomes is a clear understanding of the workload concept, its factual calculation for each caregiver along time and its inclusion in the nurse reasoning during planning elaboration are focal points. We will demonstrate how to modify the game scenario to create a digital environment in which these somewhat abstract principles can be understood and applied. Finally, we give input on an experience we had on a pilot of a thousand undergraduate nursing students.Keywords: care planning, workload, game design, hospital nurse, organizational skills, digital learning, serious game
Procedia PDF Downloads 1911215 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 681214 Applying Cognitive Psychology to Education: Translational Educational Science
Authors: Hammache Nadir
Abstract:
The scientific study of human learning and memory is now more than 125 years old. Psychologists have conducted thousands of experiments, correlational analyses, and field studies during this time, in addition to other research conducted by those from neighboring fields. A huge knowledge base has been carefully built up over the decades. Given this backdrop, we may ask ourselves: What great changes in education have resulted from this huge research base? How has the scientific study of learning and memory changed practices in education from those of, say, a century ago? Have we succeeded in building a translational educational science to rival medical science (in which biological knowledge is translated into medical practice) or types of engineering (in which, e.g., basic knowledge in chemistry is translated into products through chemical engineering)? The answer, I am afraid, is rather mixed. Psychologists and psychological research have influenced educational practice, but in fits and starts. After all, some of the great founders of American psychology—William James, Edward L. Thorndike, John Dewey, and others—are also revered as important figures in the history of education. And some psychological research and ideas have made their way into education—for instance, computer-based cognitive tutors for some specific topics have been developed in recent years—and in years past, such practices as teaching machines, programmed learning, and, in higher education, the Keller Plan were all important. These older practices have not been sustained. Was that because they failed or because of a lack of systematic research showing they were effective? At any rate, in 2012, we cannot point to a well-developed translational educational science in which research about learning and memory, thinking and reasoning, and related topics is moved from the lab into controlled field trials (like clinical trials in medicine) and the tested techniques, if they succeed, are introduced into broad educational practice. We are just not there yet, and one question that arises is how we could achieve a translational educational science.Keywords: affective, education, cognition, pshychology
Procedia PDF Downloads 3461213 Innovative Screening Tool Based on Physical Properties of Blood
Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan
Abstract:
This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability
Procedia PDF Downloads 3761212 Anthropomorphism and Its Impact on the Implementation and Perception of AI
Authors: Marie Oldfield
Abstract:
Anthropomorphism is a technique used by humans to make sense of their surroundings. Anthropomorphism is a widely used technique used to influence consumers to purchase goods or services. These techniques can entice consumers into buying something to fulfill a gap or desire in their life, ranging from loneliness to the desire to be exclusive. By manipulating belief systems, consumer behaviour can be exploited. This paper examines a series of studies to show how anthropomorphism can be used as a basis for exploitation. The first set of studies in this paper examines how anthropomorphism is used in marketing and the effects on humans engaging with this technique. The second set of studies examines how humans can be potentially exploited by artificial agents. We then discuss the consequences of this type of activity within the context of dehumanisation. This research has found potential serious consequences for society and humanity, which indicate an urgent need for further research in this area.Keywords: anthropomorphism, ethics, human-computer interaction, AI
Procedia PDF Downloads 891211 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant
Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula
Abstract:
Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning
Procedia PDF Downloads 1341210 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1291209 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5491208 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 1051207 Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy
Authors: S. Wisutmethangoon, S. Pannaray, T. Plookphol, J. Wannasin
Abstract:
2024 Aluminium alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175 °C for 36 h. Upon investigation the microstructure by using Transmission Electron Microscopy (TEM), the phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol.Keywords: 2024 aluminium alloy, gas induced semi solid, T6 heat treatment, aged hardening, transmission electron microscopy
Procedia PDF Downloads 3121206 Evaluation of Interspecific Pollination of Elaeis guineensis and Elaeis oleifera Carried Out in the Ucayali Region-Peru
Authors: Victor Sotero, Cindy Castro, Ena Velazco, Ursula Monteiro, Dora Garcia
Abstract:
The aim of this study is to carry out the evaluation of the artificial pollination of the female flowers of E. oleifera with pollen of E. guineensis, to obtain the hybrid Palma OXG, which presents two characteristics of interest, such as high resistance to the disease of spear rot and high concentration of oleic acid. The works were carried out with matrices from the experimental fields and INIA in the Province of Colonel Portillo in the Ucayali Region-Peru. From the pollination of five species of E. oleifera, fruits were obtained in two of them, called O7 and O68, with a percentage of 23.6% and 18.6% of fertile fruits. When germination was carried out in a controlled environment of temperature, air, and humidity, only the O17 species were germinated with a yield of 68.7%.Keywords: Elaeis oleífera, Elaeis guineensis, palm OXG, pollination
Procedia PDF Downloads 1411205 Analyzing the Impact of Indian Architecture on the Architecture of Cambodia, Thailand and Indonesia
Authors: Sriranjani Srinivasan
Abstract:
To appreciate Indian art and architecture by studying it in India alone will only lead to partial understanding of the whole story and the variety of the statement has been amply proved by subsequent decades of patient research. The results of the work of the Archaeological Survey of India forms only one half of the picture, the other half emerges with the studies of the archaeology and art of the Far East that progressed almost simultaneously under the Archaeological Survey of the Dutch East Indies, the École française d'Extrême-Orient (EFEO), or French School of Asian Studies, and allied institutions. The conclusions arrived at have only rendered the assertion that India produced her ultimate master pieces only through foreign influences and in foreign lands (the South-Eastern peninsular and archipelagic regions) almost axiomatic. Angkor in Cambodia and Borobudur in Java, undoubtedly the two greatest architectural marvels of Indian genius, for in content and spirit these (and other monuments of varying magnitudes), are purely Indian, would well illustrate the statement mentioned earlier. Stimulated research followed the discoveries and among the many studies and publications of such pioneers like Coedes, Parmentier, Coomaraswamy and many others in Dutch, French and English made growing contributions to the subject. This paper will discuss in detail the impact of India on the architecture of South East Asia by detailed comparison of architectural styles, elements, and construction materials of a few specific architectural master pieces, in both India and South East Asian countries. It will also analyze the reasoning behind the influence of India on South East Asian countries in spite of them being exposed to the equally culturally rich and civilized kingdoms of China. The intention of this paper is to understand that, conquest by war is not always the only reason for architectural influences and impacts.Keywords: architectural influence, Buddhist architecture, Indian architecture, Southeast Asian architecture
Procedia PDF Downloads 3081204 Management of Gap Non-Union Following Tumour Resection of the Distal Femur
Authors: Rajendra Kumar Kanojia
Abstract:
Correction of the gap created by the resection of large juxtra-articular tumours of the femur would be difficult to manage, several bone substitutes, bone grafts, and artificial bone granules were tried but the results were not as good as with the distraction osteogensis, by the help of either Ilizarov ring fixator or the mono-rail fixators. We are presenting a small study of five cases of malignant tumours of the distal femur, removed, custom made mega prosthesis was applied and that failed twice in a span of five years. We had no better option left then to apply mono-rail fixator, and start the process of distraction osteogeneis, we got the union, gap was filled with new bone and patient has been made walking in few months.Keywords: distal femur tumour, resection, defect non-union, mono-rail fixator
Procedia PDF Downloads 375