Search results for: vibration isolation performance
14238 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures
Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli
Abstract:
In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel
Procedia PDF Downloads 13214237 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)
Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam
Abstract:
Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.Keywords: androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa
Procedia PDF Downloads 36514236 Development of Blast Vibration Equation Considering the Polymorphic Characteristics of Basaltic Ground
Authors: Dong Wook Lee, Seung Hyun Kim
Abstract:
Geological structure formed by volcanic activities shows polymorphic characteristics due to repeated cooling and hardening of lava. The Jeju region is showing polymorphic characteristics in which clinker layers are irregularly distributed along with vesicular basalt due to volcanic activities. Accordingly, resident damages and environmental disputes occur frequently in the Jeju region due to blasting. The purpose of this study is to develop a blast vibration equation considering the polymorphic characteristics of basaltic ground in Jeju. The blast vibration equation consists of a functional formula of the blasting vibration constant K that changes according to ground characteristics, and attenuation index n. The case study results in Jeju showed that if there are clinker layers, attenuation index n showed a distribution of -1.11~-1.87, whereas if there are no clinker layers, n was -2.79. Moreover, if there are no clinker layers, the frequency of blast vibration showed a high frequency band from 30Hz to 100Hz, while in rocks with clinker layers it showed a low frequency band from 10Hz to 20Hz.Keywords: blast vibration equation, basaltic ground, clinker layer, blasting vibration constant, attenuation index
Procedia PDF Downloads 40914235 A Case Study on Performance of Isolated Bridges under Near-Fault Ground Motion
Authors: Daniele Losanno, H. A. Hadad, Giorgio Serino
Abstract:
This paper presents a numerical investigation on the seismic performance of a benchmark bridge with different optimal isolation systems under near fault ground motion. Usually, very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. Hence, near-fault ground motions are most likely to affect either structures with long natural period range like isolated structures or structures sensitive to velocity content such as viscously damped structures. The work is aimed at analyzing the seismic performance of a three-span continuous bridge designed with different isolation systems having different levels of damping. The case study was analyzed in different configurations including: (a) simply supported, (b) isolated with lead rubber bearings (LRBs), (c) isolated with rubber isolators and 10% classical damping (HDLRBs), and (d) isolated with rubber isolators and 70% supplemental damping ratio. Case (d) represents an alternative control strategy that combines the effect of seismic isolation with additional supplemental damping trying to take advantages from both solutions. The bridge is modeled in SAP2000 and solved by time history direct-integration analyses under a set of six recorded near-fault ground motions. In addition to this, a set of analysis under Italian code provided seismic action is also conducted, in order to evaluate the effectiveness of the suggested optimal control strategies under far field seismic action. Results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution for both mitigation of displacement demand at the isolation level and base shear reduction in the piers also in case of near fault ground motion.Keywords: isolated bridges, near-fault motion, seismic response, supplemental damping, optimal design
Procedia PDF Downloads 28714234 Design and Analysis of Semi-Active Isolation System in Low Frequency Excitation Region for Vehicle Seat to Reduce Discomfort
Authors: Andrea Tonoli, Nicola Amati, Maria Cavatorta, Reza Mirsanei, Behzad Mozaffari, Hamed Ahani, Akbar Karamihafshejani, Mohammad Ghazivakili, Mohammad Abuabiah
Abstract:
The vibrations transmitted to the drivers and passengers through vehicle seat seriously effect on the level of their attention, fatigue and physical health and reduce the comfort and efficiency of the occupants. Recently, some researchers have focused on vibrations at low excitation frequency(0.5-5 Hz) which are considered to be the main risk factors for lumbar part of the backbone but they were not applicable to A and B-segment cars regarding to the size and weight. A semi-active system with two symmetric negative stiffness structures (NSS) in parallel to a positive stiffness structure and actuators has been proposed to attenuate low frequency excitation and makes system flexible regarding to different weight of passengers which is applicable for A and B-Segment cars. Here, the 3 degree of freedom system is considered, dynamic equation clearly is presented, then simulated in MATLAB in order to analysis of performance of the system. The design procedure is derived so that the resonance peak of frequency–response curve shift to the left, the isolating range is increased and especially, the peak of the frequency–response curve is minimized. According to ISO standard different class of road profile as an input is applied to the system to evaluate the performance of the system. To evaluate comfort issues, we extract the RMS value of the vertical acceleration acting on the passenger's body. Then apply the band-pass filter, which takes into account the human sensitivity to acceleration. According to ISO, this weighted acceleration is lower than 0.315 m/s^2, so the ride is considered as comfortable.Keywords: low frequency excitation, negative stiffness, seat vehicle, vibration isolation
Procedia PDF Downloads 43914233 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data
Authors: Junyou Shi, Weiwei Cui
Abstract:
Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.Keywords: fault detection, fault isolation, testability modeling, BIT
Procedia PDF Downloads 33614232 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: cutting condition, vibration, natural frequency, decision tree, CART algorithm
Procedia PDF Downloads 33814231 Vibration Imaging Method for Vibrating Objects with Translation
Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii
Abstract:
We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation
Procedia PDF Downloads 10914230 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws
Authors: Jia-Jang Wu
Abstract:
This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.Keywords: torsional vibration, full-size model, scale model, scaling laws
Procedia PDF Downloads 39814229 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording
Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen
Abstract:
It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration
Procedia PDF Downloads 18214228 Performance of Constant Load Feed Machining for Robotic Drilling
Authors: Youji Miyake
Abstract:
In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling
Procedia PDF Downloads 19914227 Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester
Authors: R. Abdeldjebar, B. Labbaci, L. Missoum, B. Moudden, M. Djermane
Abstract:
The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach.Keywords: experimental, composite, vibration analysis, damage
Procedia PDF Downloads 67414226 Band Gap Tuning Based on Adjustable Stiffness of Local Resonators
Authors: Hossein Alimohammadi, Kristina Vassiljeva, Hassan HosseinNia, Eduard Petlenkov
Abstract:
This research article discusses the mechanisms for bandgap tuning of beam-type resonators to achieve broadband vibration suppression through adjustable stiffness. The method involves changing the center of mass of the cantilever-type resonator to achieve piezo-free tuning of stiffness. The study investigates the effect of the center of masses variation (δ) of attached masses on the bandgap and vibration suppression performance of a non-uniform beam-type resonator within a phononic structure. The results suggest that the cantilever-type resonator beam can be used to achieve tunability and real-time control and indicate that varying δ significantly impacts the bandgap and transmittance response. Additionally, the research explores the use of the first and second modes of resonators for tunability and real-time control. These findings examine the feasibility of this approach, demonstrate the potential for improving resonator performance, and provide insights into the design and optimization of metamaterial beams for vibration suppression applications.Keywords: bandgap, adjustable stiffness, spatial variation, tunability
Procedia PDF Downloads 8714225 Effects of Whole-Body Vibration Training on Fibrinolytic and Coagulative Factors in Healthy Young Man
Authors: Farshad Ghazalian, Seyed Hossein Alavi
Abstract:
Background: Use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate effects of five week whole-body vibration training with different amplitudes and progressive frequencies on fibrinolytic and coagulative factors. Methods: Twenty five healthy male students were divided randomly in three groups: high amplitude vibration group (n=10), low amplitude vibration group (n=10), and control group (n=5). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25Hz with increments of 5Hz weekly. Concentrations of fibrinogen, plasminogen, tPA, and PAI-1 before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. In order to compare pre-test with post test we used Wilcoxon signed ranked test .P<0.05 was considered statistically significant. Results: The 5 week high amplitude vibration training caused a significant improvement in tissue plasminogen activator (tPA) (p=0.028), and PAI-1 (p=0.033), fibrinogen showed decrease albeit not significantly (p=0.052). Plasminogen showed decrease not significantly (p=0.508). Low-amplitude vibration training caused a significant improvement in tissue plasminogen activator (tPA) (p=0.006) and and PAI-1 showed decrease not significantly (p=0.907). Fibrinogen showed decrease albeit not significantly (p=0.19). Plasminogen showed decrease not significantly (p=0.095). However, between groups there was no significant effect on tissue plasminogen activator (tPA) (p = 0.50), PAI-1 (p=0.249), Plasminogen (p=0.742), and fibrinogen (p=0.299). Conclusion: Amplitude of vibrations training is a important variable that effect on fibrino lytic factors.Keywords: vibration, fibrinolysis, blood coagulation, plasminogen
Procedia PDF Downloads 40514224 Benefits of Whole-Body Vibration Training on Lower-Extremity Muscle Strength and Balance Control in Middle-Aged and Older Adults
Authors: Long-Shan Wu, Ming-Chen Ko, Chien-Chang Ho, Po-Fu Lee, Jenn-Woei Hsieh, Ching-Yu Tseng
Abstract:
This study aimed to determine the effects of whole-body vibration (WBV) training on lower-extremity muscle strength and balance control performance among community-dwelling middle-aged and older adults in the United States. Twenty-nine participants without any contraindication of performing WBV exercise completed all the study procedures. Participants were randomly assigned to do body weight exercise with either an individualized vibration frequency and amplitude, a fixed vibration frequency and amplitude, or no vibration. Isokinetic knee extensor power, limits of stability, and sit-to-stand tests were performed at the baseline and after 8 weeks of training. Neither the individualized frequency-amplitude WBV training protocol nor the fixed frequency-amplitude WBV training protocol improved isokinetic knee extensor power. The limits of stability endpoint excursion score for the individualized frequency-amplitude group increased by 8.8 (12.9%; p = 0.025) after training. No significant differences were observed in fixed and control group. The maximum excursion score for the individualized frequency-amplitude group at baseline increased by 9.2 (11.5%; p = 0.006) after training. The average weight transfer time score significantly decreased by 0.21 s in the fixed group. The participants in the individualized group showed a significant increase (3.2%) in weight rising index score after 8 weeks of WBV training. These results suggest that 8 weeks of WBV training improved limit of stability and sit-to-stand performance. Future studies need to determine whether WBV training improves other factors that can influence posture control.Keywords: whole-body vibration training, muscle strength, balance control, middle-aged and older adults
Procedia PDF Downloads 22414223 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load
Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais
Abstract:
In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression
Procedia PDF Downloads 27814222 Free Vibration of Functionally Graded Smart Beams Based on the First Order Shear Deformation Theory
Authors: A. R. Nezamabadi, M. Veiskarami
Abstract:
This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers based on the first order shear deformation theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. The governing equation is established. Resulting equation is solved using the Euler's equation. The effects of the constituent volume fractions, the influences of applied voltage on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.Keywords: mechanical buckling, functionally graded beam, first order shear deformation theory, free vibration
Procedia PDF Downloads 47814221 The Effect of Damper Attachment on Tennis Racket Vibration: A Simulation Study
Authors: Kuangyou B. Cheng
Abstract:
Tennis is among the most popular sports worldwide. During ball-racket impact, substantial vibration transmitted to the hand/arm may be the cause of “tennis elbow”. Although it is common for athletes to attach a “vibration damper” to the spring-bed, the effect remains unclear. To avoid subjective factors and errors in data recording, the effect of damper attachment on racket handle end vibration was investigated with computer simulation. The tennis racket was modeled as a beam with free-free ends (similar to loosely holding the racket). Finite difference method with 40 segments was used to simulate ball-racket impact response. The effect of attaching a damper was modeled as having a segment with increased mass. It was found that the damper has the largest effect when installed at the spring-bed center. However, this is not a practical location due to interference with ball-racket impact. Vibration amplitude changed very slightly when the damper was near the top or bottom of the spring-bed. The damper works only slightly better at the bottom than at the top of the spring-bed. In addition, heavier dampers work better than lighter ones. These simulation results were comparable with experimental recordings in which the selection of damper locations was restricted by ball impact locations. It was concluded that mathematical model simulations were able to objectively investigate the effect of damper attachment on racket vibration. In addition, with very slight difference in grip end vibration amplitude when the damper was attached at the top or bottom of the spring-bed, whether the effect can really be felt by athletes is questionable.Keywords: finite difference, impact, modeling, vibration amplitude
Procedia PDF Downloads 26214220 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations
Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu
Abstract:
Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated
Procedia PDF Downloads 37314219 Bridges Seismic Isolation Using CNT Reinforced Polymer Bearings
Authors: Mohamed Attia, Vissarion Papadopoulos
Abstract:
There is no doubt that there is a continuous deterioration of structures as a result of multiple hazards which can be divided into natural hazards (e.g., earthquakes, floods, winds) and other hazards due to human behavior (e.g., ship collisions, excessive traffic, terrorist attacks). There have been numerous attempts to address the catastrophic consequences of these hazards and traditional solutions through structural design and safety factors within the design codes, but there has not been much research addressing solutions through the use of new materials that have high performance and can be more effective than usual materials such as reinforced concrete and steel. To illustrate the effect of one of the new high-performance materials, carbon nanotube-reinforced polymer (CNT/polymer) bearings with different weight fractions were simulated as structural components of seismic isolation using ABAQUS in the connection between a bridge superstructure and the substructure. The results of the analyzes showed a significant increase in the time period of the bridge and a clear decrease in the bending moment at the base of the bridge piers at each time step of the time-history analysis in the case of using CNT/polymer bearings compared to the case of direct contact between the superstructure of the bridge and the substructure.Keywords: seismic isolation, bridges damage, earthquake hazard, earthquake resistant structures
Procedia PDF Downloads 19814218 An Examination of Social Isolation and Loneliness in Adults with Hearing Loss
Authors: Christine Maleesha Withanachchi, Eithne Heffernan, Derek Hoare
Abstract:
Background: Social isolation (SI} is a major consequence of hearing loss (HL}. Isolation can lead to serious health problems (e.g., dementia and depression). Hearing Aids (HA) is the primary intervention for HL. However, these are less effective in social situations. Interventions are needed for SI in adults with hearing loss (AHL). Objectives: Investigated the relationship between HL and SI. Explored the views of AHL and hearing healthcare professionals (HHP) towards interventions for isolation. Methods: Individual and group semi-structured interviews were conducted. Interviews were conducted at the Nottingham Institute of Health Research (NIHR) Biomedical Research Centre (BRC). Six AHL and seven HHP were recruited via maximum variation sampling. The interview transcripts were analyzed using inductive thematic analysis. Results: Social impacts of HL: Most participants described that HL hurt them. This was in the form of social withdrawal, strain on relationships, and identity loss. Downstream effects of HL: Most audiologists acknowledged that isolation from HL could lead to depression. HL can also lead to exhaustion and unemployment. Impact of stigma: There are negative connotations around HL and HA (e.g. old age) and there is difficulty talking about isolation. The complexity of SI: There can be difficulty separating SI due to HL from SI due to other contributing factors (e.g. comorbidities). Potential intervention for isolation: Participants were unfamiliar with interventions for isolation and few, if any, were targeted for AHL specifically. Most participants thought an intervention should be patient-centered and run by an AHL in the community. Opinions differed regarding whether it should hear specific or generic. Implementation of intervention: Challenges to the implementation of an intervention for SI exist due to the sensitivity of the subject. Conclusions: This study demonstrated that SI is a major consequence of HL and uncovered novel findings related to its interventions. Uptake of interventions offered to AHL to reduce loneliness and social isolation is expected to be better if led by AHL in the community as opposed to HHP led interventions in the hospital or clinic settings.Keywords: adults with hearing loss, hearing aids, interventions, social isolation
Procedia PDF Downloads 14214217 A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs
Authors: Kim Duc Hoang, Hyeong Joon Ahn
Abstract:
Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments.Keywords: linear motor motion stage, residual vibration, passive RFC, pre-compressed spring
Procedia PDF Downloads 35514216 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus
Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara
Abstract:
In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.
Procedia PDF Downloads 39714215 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications
Authors: Gema M. Rodado, Jose M. Olavarrieta
Abstract:
Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests
Procedia PDF Downloads 11814214 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model
Authors: Gürkan Şakar, Fevzi Çakmak Bolat
Abstract:
In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model
Procedia PDF Downloads 41814213 Design and Implementation of a Memory Safety Isolation Method Based on the Xen Cloud Environment
Authors: Dengpan Wu, Dan Liu
Abstract:
In view of the present cloud security problem has increasingly become one of the major obstacles hindering the development of the cloud computing, put forward a kind of memory based on Xen cloud environment security isolation technology implementation. And based on Xen virtual machine monitor system, analysis of the model of memory virtualization is implemented, using Xen memory virtualization system mechanism of super calls and grant table, based on the virtual machine manager internal implementation of access control module (ACM) to design the security isolation system memory. Experiments show that, the system can effectively isolate different customer domain OS between illegal access to memory data.Keywords: cloud security, memory isolation, xen, virtual machine
Procedia PDF Downloads 41014212 3-D Printed Step Shaped MIMO Patch Antenna Design for Wireless Applications
Authors: Manasa Chinnam, Damera Vakula, N. V. S. N. Sarma
Abstract:
A three-dimensional step-shaped MIMO antenna with reduced mutual coupling between antenna components and the ability to operate at multiple bands is presented. The proposed antenna consists of two separate radiating components; each part is designed to provide a considerable degree of isolation between the radiators. The MIMO antenna measures 36×84 mm2. Furthermore, a flexible PLA substrate that is 2 mm thick is designed for the MIMO antenna. The study's most significant finding is that low isolation (below 30dB) can be achieved throughout the whole operating range. This is operated at 6.3 GHz with an approximate radiation efficiency of 94% and a peak gain of 7.9 dB and can attain an Envelope Correlation Coefficient (ECC) of less than 0.0015. The proposed antenna is a good candidate for wireless application since the designed antenna achieves a notable improvement in isolation, radiation performance in the intended band of operation without the need for a decoupling mechanism.Keywords: multi-input multi output, envelope correlation coefficient, 3-D printing, step shape, polylactic acid
Procedia PDF Downloads 1114211 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing
Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca
Abstract:
The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness
Procedia PDF Downloads 8114210 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System
Authors: Soltani Amir, Wang Xuan
Abstract:
The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building
Procedia PDF Downloads 51514209 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island
Authors: Dong Wook Lee, Seung Hyun Kim
Abstract:
Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.Keywords: attenuation index, basaltic ground, blast vibration constant, blast vibration equation, clinker layer
Procedia PDF Downloads 280