Search results for: vehicle location
3458 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 1853457 AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter
Authors: M. H. Fazel Zarandi, N. Moshahedi
Abstract:
The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution.Keywords: fuzzy modeling, location, possibilistic clustering, queuing
Procedia PDF Downloads 3963456 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image
Authors: Leping Chen, Daoxiang An, Xiaotao Huang
Abstract:
Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.Keywords: circular SAR, vehicle detection, automatic, imaging
Procedia PDF Downloads 3683455 Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures
Authors: Brandon To, Yong S. Park
Abstract:
As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures.Keywords: battery pack, electric vehicle, honeycomb, side impact
Procedia PDF Downloads 1233454 Hybrid Velocity Control Approach for Tethered Aerial Vehicle
Authors: Lovesh Goyal, Pushkar Dave, Prajyot Jadhav, GonnaYaswanth, Sakshi Giri, Sahil Dharme, Rushika Joshi, Rishabh Verma, Shital Chiddarwar
Abstract:
With the rising need for human-robot interaction, researchers have proposed and tested multiple models with varying degrees of success. A few of these models performed on aerial platforms are commonly known as Tethered Aerial Systems. These aerial vehicles may be powered continuously by a tether cable, which addresses the predicament of the short battery life of quadcopters. This system finds applications to minimize humanitarian efforts for industrial, medical, agricultural, and service uses. However, a significant challenge in employing such systems is that it necessities attaining smooth and secure robot-human interaction while ensuring that the forces from the tether remain within the standard comfortable range for the humans. To tackle this problem, a hybrid control method that could switch between two control techniques: constant control input and the steady-state solution, is implemented. The constant control approach is implemented when a person is far from the target location, and error is thought to be eventually constant. The controller switches to the steady-state approach when the person reaches within a specific range of the goal position. Both strategies take into account human velocity feedback. This hybrid technique enhances the outcomes by assisting the person to reach the desired location while decreasing the human's unwanted disturbance throughout the process, thereby keeping the interaction between the robot and the subject smooth.Keywords: unmanned aerial vehicle, tethered system, physical human-robot interaction, hybrid control
Procedia PDF Downloads 983453 Numerical Simulation of Truck Collision with Road Blocker
Authors: Engin Metin Kaplan, Kemal Yaman
Abstract:
In this study, the crash of a medium heavy vehicle onto a designed Road blocker (vehicle barrier) is studied numerically. Structural integrity of the Road blocker is studied by nonlinear dynamic methods under the loading conditions which are defined in the standards. NASTRAN® and LS-DYNA® which are commercial software are used to solve the problem. Outer geometry determination, alignment of the inner part and material properties of the road blocker are studied linearly to yield design parameters. Best design parameters are determined to achieve the most structurally optimized road blocker. Strain and stress values of the vehicle barrier are obtained by solving the partial differential equations.Keywords: vehicle barrier, truck collision, road blocker, crash analysis
Procedia PDF Downloads 4763452 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle
Authors: Vivek Thorat, Suhasini Desai
Abstract:
The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission
Procedia PDF Downloads 2553451 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles
Authors: Tobias Schramm, Günther Prokop
Abstract:
Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation
Procedia PDF Downloads 1183450 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location
Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa
Abstract:
This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.Keywords: specific absorption rate (SAR), ultra wideband (UWB), coordinates, cancer detection
Procedia PDF Downloads 4043449 Unmanned Aerial Vehicle Landing Based on Ultra-Wideband Localization System and Optimal Strategy for Searching Optimal Landing Point
Authors: Meng Wu
Abstract:
Unmanned aerial vehicle (UAV) landing technology is a common task that is required to be fulfilled by fly robots. In this paper, the crazyflie2.0 is located by ultra-wideband (UWB) localization system that contains 4 UWB anchors. Another UWB anchor is introduced and installed on a stationary platform. One cost function is designed to find the minimum distance between crazyflie2.0 and the anchor installed on the stationary platform. The coordinates of the anchor are unknown in advance, and the goal of the cost function is to define the location of the anchor, which can be considered as an optimal landing point. When the cost function reaches the minimum value, the corresponding coordinates of the UWB anchor fixed on the stationary platform can be calculated and defined as the landing point. The simulation shows the effectiveness of the method in this paper.Keywords: UAV landing, UWB localization system, UWB anchor, cost function, stationary platform
Procedia PDF Downloads 893448 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections
Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh
Abstract:
Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.Keywords: delay, saturation flow, signalised intersection, vehicle composition
Procedia PDF Downloads 4653447 Evaluating the Location of Effective Product Advertising on Facebook Ads
Authors: Aulia F. Hadining, Atya Nur Aisha, Dimas Kurninatoro Aji
Abstract:
Utilization of social media as a marketing tool is growing rapidly, including for SMEs. Social media allows the user to give product evaluation and recommendations to the public. In addition, the social media facilitate word-of-mouth marketing communication. One of the social media that can be used is Facebook, with Facebook Ads. This study aimed to evaluate the location of Facebook Ads, to obtain an appropriate advertising design. There are three alternatives location consist of desktop, right-hand column and mobile. The effectiveness and efficiency of advertising will be measured based on advertising metrics such as reach, click, Cost per Click (CUC) and Unique Click-Through-Rate (UCTR). Facebook's Ads Manager was used for seven days, targeted by age (18-24), location (Bandung), language (Indonesia) and keywords. The result was 13,999 total reach, as well as 342 clicks. Based on the results of comparison using ANOVA, there was a significant difference for each placement location based on advertising metrics. Mobile location was chosen to be successful ads, because it produces the lowest CUC, amounting to Rp 691,- per click and 14% UCTR. Results of this study showed Facebook Ads was useful and cost-effective media to promote the product of SME, because it could be view by many people in the same time.Keywords: marketing communication, social media, Facebook Ads, mobile location
Procedia PDF Downloads 3553446 Interior Noise Reduction of Construction Equipment Vehicle
Authors: Pradeep Jawale, Sharad Supare, Sachin Kumar Jain, Nagesh Walke
Abstract:
One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market.Keywords: interior noise, noise reduction, CEV, noise source identification
Procedia PDF Downloads 463445 Criteria Analysis of Residential Location Preferences: An Urban Dwellers’ Perspective
Authors: Arati Siddharth Petkar, Joel E. M. Macwan
Abstract:
Preferences for residential location are of a diverse nature. Primarily they are based on the socio-economic, socio-cultural, socio-demographic characteristics of the household. It also depends on character, and the growth potential of different areas in a city. In the present study, various criteria affecting residential location preferences from the Urban Dwellers’ perspective have been analyzed. The household survey has been conducted in two parts: Existing Buyers’ survey and Future Buyers’ survey. The analysis reveals that workplace location is the most governing criterion in deciding residential location from the majority of the urban dwellers perspective. For analyzing the importance of varied criteria, Analytical Hierarchy Process approach has been explored. The suggested approach will be helpful for urban planners, decision makers and developers, while designating a new residential area or redeveloping an existing one.Keywords: analytical hierarchy process (AHP), household, preferences, residential location preferences, residential land use, urban dwellers
Procedia PDF Downloads 2093444 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3733443 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries
Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness
Abstract:
The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.Keywords: eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles
Procedia PDF Downloads 733442 Point-of-Interest Recommender Systems for Location-Based Social Network Services
Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim
Abstract:
Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.Keywords: location-based social network services, point-of-interest, recommender systems, business analytics
Procedia PDF Downloads 2293441 Tuning of Fixed Wing Micro Aerial Vehicles Using Tethered Setup
Authors: Shoeb Ahmed Adeel, Vivek Paul, K. Prajwal, Michael Fenelon
Abstract:
Techniques have been used to tether and stabilize a multi-rotor MAV but carrying out the same process to a fixed wing MAV is a novel method which can be utilized in order to reduce damage occurring to the fixed wing MAVs while conducting flight test trials and PID tuning. A few sensors and on board controller is required to carry out this experiment in horizontal and vertical plane of the vehicle. Here we will be discussing issues such as sensitivity of the air vehicle, endurance and external load of the string acting on the vehicle.Keywords: MAV, PID tuning, tethered flight, UAV
Procedia PDF Downloads 6373440 Comparison of the Performance of a Brake Energy Regeneration System in Hybrid Vehicles
Authors: Miguel Arlenzo Duran Sarmiento, Luis Alfonso Del Portillo Valdés, Carlos Borras Pinilla
Abstract:
Brake energy regeneration systems have the capacity to transform part of the vehicle's kinetic energy during deceleration into useful energy. These systems can be implemented in hybrid vehicles, which can be electric or hydraulic in type, and contribute to reducing the energy required to propel the vehicle thanks to the accumulation of energy. This paper presents the modeling and simulation of a braking energy regeneration system applied in hydraulic hybrid vehicles configured in parallel, the modeling and simulation were performed in Simulink of Matlab, where a performance comparison of the regenerated torque as a function of vehicle load, the displacement of the hydraulic regeneration device and the vehicle speed profile. The speed profiles used in the simulation are standard profiles such as the NEDC and WLTP profiles. The vehicle loads range from 1500 kg to 12000 kg. The results show the comparison of the torque required by the vehicle, the torque regenerated by the system subjected to the different speed and load conditions.Keywords: braking energy, energy regeneration, hybrid vehicles, kinetic energy, torque
Procedia PDF Downloads 1243439 Design and Validation of Different Steering Geometries for an All-Terrain Vehicle
Authors: Prabhsharan Singh, Rahul Sindhu, Piyush Sikka
Abstract:
The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values.Keywords: all-terrain vehicle, Ackermann, Adams car, Baja Sae, steering geometry, steering system, tire slip, traction, understeer gradient
Procedia PDF Downloads 1543438 Dependence of Shaft Stiffness on the Crack Location
Authors: H. M. Mobarak, Helen Wu, Chunhui Yang
Abstract:
In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L.Keywords: cracked shaft, crack location, shaft stiffness, unbalanced force
Procedia PDF Downloads 3083437 A Polynomial Time Clustering Algorithm for Solving the Assignment Problem in the Vehicle Routing Problem
Authors: Lydia Wahid, Mona F. Ahmed, Nevin Darwish
Abstract:
The vehicle routing problem (VRP) consists of a group of customers that needs to be served. Each customer has a certain demand of goods. A central depot having a fleet of vehicles is responsible for supplying the customers with their demands. The problem is composed of two subproblems: The first subproblem is an assignment problem where the number of vehicles that will be used as well as the customers assigned to each vehicle are determined. The second subproblem is the routing problem in which for each vehicle having a number of customers assigned to it, the order of visits of the customers is determined. Optimal number of vehicles, as well as optimal total distance, should be achieved. In this paper, an approach for solving the first subproblem (the assignment problem) is presented. In the approach, a clustering algorithm is proposed for finding the optimal number of vehicles by grouping the customers into clusters where each cluster is visited by one vehicle. Finding the optimal number of clusters is NP-hard. This work presents a polynomial time clustering algorithm for finding the optimal number of clusters and solving the assignment problem.Keywords: vehicle routing problems, clustering algorithms, Clarke and Wright Saving Method, agglomerative hierarchical clustering
Procedia PDF Downloads 3943436 Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper
Authors: Wael Ata
Abstract:
Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitationsKeywords: Tracked Vehicles, MR dampers, Skyhook controller, fuzzy logic controller
Procedia PDF Downloads 1223435 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.Keywords: distributed generation photovoltaic (DG PV), optimal location, penetration level, sub–transmission network
Procedia PDF Downloads 3513434 A Matheuristic Algorithm for the School Bus Routing Problem
Authors: Cagri Memis, Muzaffer Kapanoglu
Abstract:
The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem
Procedia PDF Downloads 713433 Development of Real Time System for Human Detection and Localization from Unmanned Aerial Vehicle Using Optical and Thermal Sensor and Visualization on Geographic Information Systems Platform
Authors: Nemi Bhattarai
Abstract:
In recent years, there has been a rapid increase in the use of Unmanned Aerial Vehicle (UAVs) in search and rescue (SAR) operations, disaster management, and many more areas where information about the location of human beings are important. This research will primarily focus on the use of optical and thermal camera via UAV platform in real-time detection, localization, and visualization of human beings on GIS. This research will be beneficial in disaster management search of lost humans in wilderness or difficult terrain, detecting abnormal human behaviors in border or security tight areas, studying distribution of people at night, counting people density in crowd, manage people flow during evacuation, planning provisions in areas with high human density and many more.Keywords: UAV, human detection, real-time, localization, visualization, haar-like, GIS, thermal sensor
Procedia PDF Downloads 4663432 Wheel Diameter and Width Influence in Variability of Brake Data Measurement at Ministry of Transport Facilities
Authors: Carolina Senabre, Sergio Valero, Emilio Velasco
Abstract:
The brake systems of vehicles are tested periodically by a “brake tester” at Ministry of Transport (MOT) stations. This tester measures the effectiveness of vehicle. This parameter is established by the International Committee of Vehicle Inspection (CITA). In this paper, we present an investigation of the influence of the tire size on the measurements of brake force on three MOT brake testers. We performed an analysis of the vehicle braking capacity test at MOT stations. The influence of varying wheel diameter and width on the measurement of braking at MOT stations has been analyzed. Thereby, the MOT brake tester as a verification system for a vehicle has been evaluated.Keywords: brake tester, ministry of transport facilities, wheel diameter, efficiency
Procedia PDF Downloads 3763431 Real-Time Online Tracking Platform
Authors: Denis Obrul, Borut Žalik
Abstract:
We present an extendable online real-time tracking platform that can be used to track a wide variety of location-aware devices. These can range from GPS devices mounted inside a vehicle, closed and secure systems such as Teltonika and to mobile phones running multiple platforms. Special consideration is given to decentralized approach, security and flexibility. A number of different use cases are presented as a proof of concept.Keywords: real-time, online, gps, tracking, web application
Procedia PDF Downloads 3543430 Aerodynamic Analysis of Vehicles
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes
Abstract:
Two of the objective principal in the study of the aerodynamics of vehicles are the safety and the acting. Those objectives can be reached through the development of devices modify the drainage of air about of the vehicle and also through alterations in the way of the external surfaces. The front lowest profile of the vehicle, for instance, has great influence on the coefficient of aerodynamic penetration (Cx) and later on great part of the pressure distribution along the surface of the vehicle. The objective of this work was of analyzing the aerodynamic behavior that it happens on some types the trucks of vehicles, based on experimentation in aerodynamic tunnel, seeking to determine the aerodynamic efficiency of each one of them.Keywords: aerodynamic, vehicles, wind tunnel, safety, acting
Procedia PDF Downloads 5003429 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway
Authors: Fatemeh Behbahani, Rubiyah Yusof
Abstract:
To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC
Procedia PDF Downloads 238