Search results for: span
419 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses
Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul
Abstract:
The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.Keywords: aluminum foam, composite panel, flexure, transport application
Procedia PDF Downloads 339418 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab
Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby
Abstract:
This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth
Procedia PDF Downloads 362417 A Short Survey of Integrating Urban Agriculture and Environmental Planning
Authors: Rayeheh Khatami, Toktam Hanaei, Mohammad Reza Mansouri Daneshvar
Abstract:
The growth of the agricultural sector is known as an essential way to achieve development goals in developing countries. Urban agriculture is a way to reduce the vulnerability of urban populations of the world toward global environmental change. It is a sustainable and efficient system to respond to the environmental, social and economic needs of the city, which leads to urban sustainability. Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as poverty, food security, and environmental problems. In this study, we follow a perspective based on urban agriculture literature in order to indicate the urban agriculture’s benefits in environmental planning strategies in non-western countries like Iran. The methodological approach adopted is based on qualitative approach and documentary studies. A total of 35 articles (mixed quantitative and qualitative methods studies) were studied in final analysis, which are published in relevant journals that focus on this subject. Studies show the wide range of positive benefits of urban agriculture on food security, nutrition outcomes, health outcomes, environmental outcomes, and social capital. However, there was no definitive conclusion about the negative effects of urban agriculture. This paper provides a conceptual and theoretical basis to know about urban agriculture and its roles in environmental planning, and also conclude the benefits of urban agriculture for researchers, practitioners, and policymakers who seek to create spaces in cities for implementation urban agriculture in future.Keywords: urban agriculture, environmental planning, urban planning, literature
Procedia PDF Downloads 145416 An Assessment of the Anthropometric Characteristics of Malaysian Cricket Batsmen
Authors: Muhammad Zia ul Haq, Ong Kuan Boon, Jeffrey Low Fook Lee, Bendri Bin Dasril, Amna Iqbal, Muhammad Saleem
Abstract:
This study is bond of two purpose, first is to establish the anthropometric profile of Malaysian cricket batsmen and second, to find the variances among the anthropometric characteristics of ten under-16 years, eight under-19 years and eight senior teams batsmen. The anthropometric variables were measured as 8 skinfolds, 12 circumferences, 06 lengths and 05 breadths, stature, sitting height, arm span, body mass, hand grip strength and leg strength. The batsmen of under-19 and under-16 found similar in skinfolds, sum of skinfolds, circumferences and breadth measurements but significantly lesser than the senior team batsmen. Senior and Under-19 batsmen were almost found similar in segmental lengths, heights and arm span but significantly higher than the under-16 batsmen. Breadth measurements the under-19 found higher than the senior and u-16 batsmen. The hand grips strength of the senior batsmen significantly high than the uder-19 and under-16 players and both groups were similar and no significant difference were found in leg strength of all three groups batsmen. Leg strength were found significant correlation with wrist, hip, thigh, and calf girth and handgrip strength. The hand grip strength were found correlated with all variables except biceps, mid-thigh skinfold, segmental length, humerus breadth. It is concluded from the present study that the girth segments and hand grip strength are the predictors of good performance in cricket batting.Keywords: cricket batting, batsmen, anthropometry, body segments, hand grip strength
Procedia PDF Downloads 576415 The Impact of Two Factors on EFL Learners' Fluency
Authors: Alireza Behfar, Mohammad Mahdavi
Abstract:
Nowadays, in the light of progress in the world of science, technology and communications, mastery of learning international languages is a sure and needful matter. In learning any language as a second language, progress and achieving a desirable level in speaking is indeed important for approximately all learners. In this research, we find out how preparation can influence L2 learners' oral fluency with respect to individual differences in working memory capacity. The participants consisted of sixty-one advanced L2 learners including MA students of TEFL at Isfahan University as well as instructors teaching English at Sadr Institute in Isfahan. The data collection consisted of two phases: A working memory test (reading span test) and a picture description task, with a one-month interval between the two tasks. Speaking was elicited through speech generation task in which the individuals were asked to discuss four topics emerging in two pairs. The two pairs included one simple and one complex topic and was accompanied by planning time and without any planning time respectively. Each topic was accompanied by several relevant pictures. L2 fluency was assessed based on preparation. The data were then analyzed in terms of the number of syllables, the number of silent pauses, and the mean length of pauses produced per minute. The study offers implications for strategies to improve learners’ both fluency and working memory.Keywords: two factors, fluency, working memory capacity, preparation, L2 speech production reading span test picture description
Procedia PDF Downloads 230414 Blood Lipid Profile and Liver Lipid Peroxidation in Normal Rat Fed with Different Concentrations of Acacia senegal and Acacia seyal
Authors: Eqbal M. A. Dauqan, A. Aminah
Abstract:
The aim of the present study was to evaluate the blood lipid profile and liver lipid peroxidation in normal rat fed with different concentrations of Acacia senegal and Acacia seyal. Thirty six Sprague Dawley male rats each weighing between 180-200g were randomly divided into two groups. Each group contains eighteen rats and were divided into three groups of 6 rats per group. The rats were fed ad libitum with commercial rat’s feed and tap water containing different concentrations of Acacia senegal and Acacia seyal (3% and 6%) for 4 weeks. The results at 4 weeks showed that there was no significant difference (p≤0.05) in the total cholesterol (TC) and triglycerides (TG) between the control group and treated groups while the results for the high density lipoprotein (HDL-C) showed a significant decrease (P≥0.05) at the 3% and 6% of gum arabic treated groups compared to control group. There was a significant increase (P≥0.05) in low density lipoprotein (LDL-C) with 3% and 6% of gum Arabic (GA) groups compared to the control group. The study indicated that there was no significant (p≤0.05) effect on TC and TG but there was significant effect (P≥0.05) on HDL-C and LDL-C in blood lipid profile of normal rat. The results showed that after 4 weeks of treatment the malondialdehyde (MDA) value in rat fed with 6% of A. seyal group was significantly higher (P≥0.05) than control or other treated groups of A. seyal and A. senegal studied. Thus, the two species of gum arabic did not have beneficial effect on blood lipid profile and lipid peroxidation.Keywords: Acacia senegal, acacia seyal, lipid profile, lipid peroxidation, malondialdehyde (MDA)
Procedia PDF Downloads 257413 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application
Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim
Abstract:
One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure
Procedia PDF Downloads 175412 Inter-Specific Differences in Leaf Phenology, Growth of Seedlings of Cork OAK (Quercus suber L.), Zeen Oak (Quercus canariensis Willd.) and Their Hybrid Afares Oak (Quercus afares Pomel) in the Nursery
Authors: S. Mhamdi, O. Brendel, P. Montpied, K. Ben Yahia, N. Saouyah, B. Hasnaoui, E. Dreyer
Abstract:
Leaf Life Span (LLS) is used to classify trees into two main groups: evergreen and deciduous species. It varies according to the forms of life between taxonomic groups. Co-occurrence of deciduous and evergreen oaks is common in some Mediterranean type climate areas. Nevertheless, in the Tunisian forests, there is no enough information about the functional inter-specific diversity among oak species, especially in the mixed stand marked by the simultaneous presence of Q. suber L., Q. canariensis Willd. and their hybrid (Q. afares), the latter being an endemic oak species threatened with extinction. This study has been conducted to estimate the LLS, the relative growth rate, and the count of different growth flushes of samplings in semi-controlled conditions. Our study took 17 months, with an observation's interval of 4 weeks. The aim is to characterize and compare the hybrid species to the parental ones. Differences were observed among species, both for phenology and growth. Indeed, Q. suber saplings reached higher total height and number of growth flushes then Q. canariensis, while Q. afares showed much less growth flushes than the parental species. The LLS of parental species has exceeded the duration of the experiment, but their hybrid lost all leaves on all cohorts. The short LLSs of hybrid species are in accordance with this phenology in the field, but for Q. canariensis there was a contrast with observations in the field where phenology is strictly annual. This study allowed us to differentiate the hybrid from both parental species.Keywords: leaf life span, growth, hybrid, Q. afares Pomel, Q. suber L., Q.canariensis Willd
Procedia PDF Downloads 363411 An Architectural Study on the Railway Station Buildings in Malaysia during British Era, 1885-1957
Authors: Nor Hafizah Anuar, M. Gul Akdeniz
Abstract:
This paper attempted on emphasize on the station buildings façade elements. Station buildings were essential part of the transportation that reflected the technology. Comparative analysis on architectural styles will also be made between the railway station buildings of Malaysia and any railway station buildings which have similarities. The Malay Peninsula which is strategically situated between the Straits of Malacca and the South China Sea makes it an ideal location for trade. Malacca became an important trading port whereby merchants from around the world stopover to exchange various products. The Portuguese ruled Malacca for 130 years (1511–1641) and for the next century and a half (1641–1824), the Dutch endeavoured to maintain an economic monopoly along the coasts of Malaya. Malacca came permanently under British rule under the Anglo-Dutch Treaty, 1824. Up to Malaysian independence in 1957, Malaya saw a great influx of Chinese and Indian migrants as workers to support its growing industrial needs facilitated by the British. The growing tin ore mining and rubber industry resulted as the reason of the development of the railways as urgency to transport it from one place to another. The existence of railway transportation becomes more significant when the city started to bloom and the British started to build grandeur buildings that have different functions; administrative buildings, town and city halls, railway stations, public works department, courts, and post offices.
Keywords: Malaysia, station building, architectural styles, facade elements
Procedia PDF Downloads 167410 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash
Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo
Abstract:
Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.Keywords: composite, fly ash, full-scale, high volume
Procedia PDF Downloads 218409 Role of Inflammatory Markers in Arthritic Rats Treated with Ethanolic Bark Extract of Albizia procera
Authors: M. Sangeetha, D. Chamundeeswari, C. Saravanababu, C. Rose, V. Gopal
Abstract:
Rheumatoid arthritis (RA) is a chronic, progressive, systemic inflammatory disorder affecting the synovial joints and typically producing symmetrical arthritis that leads to joint destruction, which is responsible for the deformity and disability. Despite improvements in the treatment of RA over the past decade, there still is a need for new therapeutic agents that are efficacious, less expensive, and free of severe adverse reactions. The present study aimed to investigate role of inflammatory markers in arthritic rats treated with ethanolic bark extract of Albizia procera. The protective effect of ethanolic bark extract of Albizia procera against complete Freund’s adjuvant (CFA) induced arthritis in rats. Arthritis was induced by an intradermal injection of 0.1 ml FCA in the foot pad of left hind limb of rats. ETBE (100 and 200 mg/kg b.wt./p.o) and the reference drug diclofenac (25 mg/kg b.wt./p.o) were administered to arthritic rats. Paw volume was measured for all the animals before inducing arthritis and thereafter once in seven days by using plethysmometer for 42 days. Gene expression of inflammatory markers such as IL-1β and IL-10 were investigated in paw tissues. Up regulation of IL-1β and Down regulation IL-10 were observed in CFA injected rats when compared to normal rats. ETBE attenuated these alterations dose dependently when compared to the vehicle treated rats. These results provide insights into the mechanism of anti-arthritic activity, and unravel potential therapeutic use of Albizia procera in arthritis.
Keywords: CFA-Complete Freund’s adjuvant, ETBE – ethanolic bark extract, IL- interleukins, RA-rheumatoid arthritis
Procedia PDF Downloads 285408 Design and Development of Constant Stress Composite Cantilever Beam
Authors: Vinod B. Suryawanshi, Ajit D. Kelkar
Abstract:
Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.Keywords: beams, composites, constant cross-section, structures
Procedia PDF Downloads 349407 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis
Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam
Abstract:
The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.Keywords: hollow steel plate shear wall, time history analysis, finite element method, abaqus software
Procedia PDF Downloads 104406 Through-Bolt Moment Connection in HSS Column
Authors: Bardia Khafaf, Mehrdad Ghaffari, Amir Hussein Samakar
Abstract:
It is currently desirable to use Hollow Square Sections (HSS) in moment resistant structures in construction of building because they offer fewer restrictions for designing and more useful space while adhering to build design codes. This paper present a through bolt connection in HSS column. This connection meets building code standards that require the moment resistant connections to deflect and absorb energy resulting from gravity and seismic loads. Connection through bolts is installed and pretension to provide the connection strength needed to make a beam–column moment rigid zone. A rigid joint is typically used to resist lateral forces by holding columns and beams fixed in relation to one another. With bolted moment frames using HSS columns, a through–bolt connection could be used to secure the beam and end plate to the column. However, when multiple columns and beams are used to span a length of building, the use of through-bolts would necessities aligning multiple beams simultaneously to the columns. In the case of a linear span, the assembly process requires the holes of a first beam end plate to be aligned with through bolt holes in a column and aligning the holes of a second, opposing beam plate with the column through bolt, then inserting the through bolts in each hole for tightening with nuts and washers. In moment resistant building, a problem arises when assembling beams to columns where multiple beams and columns are required. Through bolt, moment connections are among the economical, practical and not difficult rigid steel connection for HSS column building. In this paper, the results of numerous analytical studies performed for moment structures with HSS columns with through bolt based on AISC standard codes are shown.Keywords: through bolt, moment resistant connection, HSS columns section, construction engineering
Procedia PDF Downloads 470405 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer
Authors: Hao-Su Liu, Jun-Qing Lei
Abstract:
This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge
Procedia PDF Downloads 317404 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 340403 Numerical Analysis of the Flexural Behaviour of Concrete-Filled Rectangular Flange Girders
Authors: R. Al-Dujele, K. A. Cashell
Abstract:
A tubular flange girder is an I-shaped steel girder with either one of both of the usual flat flange plates replaced with a hollow section. Typically, these hollow sections are either rectangular or circular in shape. Concrete filled tubular flange girders (CFTFGs) are unconventional I-shaped beams that use a hollow structural section as the top flange which is filled with concrete. The resulting section offers very high lateral torsional buckling strength and stiffness compared with conventional steel I-beams of similar depth, width and weight, typically leading to a reduction in lateral bracing requirements. This paper is focussed on investigating the ultimate capacity of concrete filled rectangular tubular flange girders (CFRTFGs). These are complex members and their behaviour is governed by a number of inter-related parameters. The FE model is developed using ABAQUS software, 3-D finite element (FE) model for simply supported CFRTFGs subjected to two point loads applied at the third-span points is built. An initial geometrical imperfection of (L/1000), as well as geometrical and material nonlinearities, are introduced into the model, where L denotes the span of the girder. In this numerical model, the concrete and steel materials are modelled using eight-node solid and four-node shell elements, respectively. In addition to the FE model, simplified analytical expressions for the flexural capacity are also proposed, and the results are compared to those from the FE analyses. The analytical expressions, which are suitable for design, are also shown to be capable of providing an accurate depiction of the bending moment capacity.Keywords: concrete-filled rectangular tubular flange girders, ultimate capacity, confining effect, finite element analysis
Procedia PDF Downloads 145402 Design Challenges for Severely Skewed Steel Bridges
Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju
Abstract:
There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint
Procedia PDF Downloads 196401 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab
Authors: Jeries Khoury
Abstract:
The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three ‘palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism
Procedia PDF Downloads 200400 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 108399 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning
Procedia PDF Downloads 299398 A Novel Algorithm for Production Scheduling
Authors: Ali Mohammadi Bolban Abad, Fariborz Ahmadi
Abstract:
Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, NP-Hard problems, production scheduling
Procedia PDF Downloads 380397 Real-World Prevalence of Musculoskeletal Disorders in Nigeria
Authors: F. Fatoye, C. E. Mbada, T. Gebrye, A. O. Ogunsola, C. Fatoye, O. Oyewole
Abstract:
Musculoskeletal disorders (MSDs) are a major cause of pain and disability. It is likely to become a greater economic and public health burden that is unnecessary. Thus, reliable prevalence figures are important for both clinicians and policy-makers to plan health care needs for those affected with the disease. This study estimated hospital based real-world prevalence of MSDs in Nigeria. A review of medical charts for adult patients attending Physiotherapy Outpatient Clinic at the Obafemi Awolowo University Teaching Hospitals Complex, Osun State, Nigeria between 2009 and 2018 was carried out to identify common MSDs including low back pain (LBP), cervical spondylosis (CSD), post immobilization stiffness (PIS), sprain, osteoarthritis (OA), and other conditions. Occupational class of the patients was determined using the International Labour Classification (ILO). Data were analysed using descriptive statistics of frequency and percentages. Overall, medical charts of 3,340 patients were reviewed within the span of ten years (2009 to 2018). Majority of the patients (62.8%) were in the middle class, and the remaining were in low class (25.1%) and high class (10.5%) category. An overall prevalence of 47.35% of MSD was found within the span of ten years. Of this, the prevalence of LBP, CSD, PIS, sprain, OA, and other conditions was 21.6%, 10%, 18.9%, 2%, 6.3%, and 41.3%, respectively. The highest (14.2%) and lowest (10.5%) prevalence of MSDs was recorded in the year of 2012 and 2018, respectively. The prevalence of MSDs is considerably high among Nigerian patients attending outpatient a physiotherapy clinic. The high prevalence of MSDs underscores the need for clinicians and decision makers to put in place appropriate strategies to reduce the prevalence of these conditions. In addition, they should plan and evaluate healthcare services to improve the health outcomes of patients with MSDs. Further studies are required to determine the economic burden of the condition and examine the clinical and cost-effectiveness of physiotherapy interventions for patients with MSDs.Keywords: musculoskeletal disorders, Nigeria, prevalence, real world
Procedia PDF Downloads 173396 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 272395 Strength Properties of Ca-Based Alkali Activated Fly Ash System
Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh
Abstract:
Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption
Procedia PDF Downloads 226394 Working Memory Capacity and Motivation in Japanese English as a Foreign Language Learners' Speaking Skills
Authors: Akiko Kondo
Abstract:
Although the effects of working memory capacity on second/foreign language speaking skills have been researched in depth, few studies have focused on Japanese English as a foreign language (EFL) learners as compared to other languages (Indo-European languages), and the sample sizes of the relevant Japanese studies have been relatively small. Furthermore, comparing the effects of working memory capacity and motivation which is another kind of frequently researched individual factor on L2 speaking skills would add to the scholarly literature in the field of second language acquisition research. Therefore, the purposes of this study were to investigate whether working memory capacity and motivation have significant relationships with Japanese EFL learners’ speaking skills and to investigate the degree to which working memory capacity and motivation contribute to their English speaking skills. One-hundred and ten Japanese EFL students aged 18 to 26 years participated in this study. All of them are native Japanese speakers and have learned English as s foreign language for 6 to 15. They completed the Versant English speaking test, which has been widely used to measure non-native speakers’ English speaking skills, two types of working memory tests (the L1-based backward digit span test and the L1-based listening span test), and the language learning motivation survey. The researcher designed the working memory tests and the motivation survey. To investigate the relationship between the variables (English speaking skills, working memory capacity, and language learning motivation), a correlation analysis was conducted, which showed that L2 speaking test scores were significantly related to both working memory capacity and language learning motivation, although the correlation coefficients were weak. Furthermore, a multiple regression analysis was performed, with L2 speaking skills as the dependent variable and working memory capacity and language learning motivation as the independent variables. The results showed that working memory capacity and motivation significantly explained the variance in L2 speaking skills and that the L2 motivation had slightly larger effects on the L2 speaking skills than the working memory capacity. Although this study includes several limitations, the results could contribute to the generalization of the effects of individual differences, such as working memory and motivation on L2 learning, in the literature.Keywords: individual differences, motivation, speaking skills, working memory
Procedia PDF Downloads 165393 Effect of Blood Sugar Levels on Short Term and Working Memory Status in Type 2 Diabetics
Authors: Mythri G., Manjunath ML, Girish Babu M., Shireen Swaliha Quadri
Abstract:
Background: The increase in diabetes among the elderly is of concern because in addition to the wide range of traditional diabetes complications, evidence has been growing that diabetes is associated with increased risk of cognitive decline. Aims and Objectives: To find out if there is any association between blood sugar levels and short-term and working memory status in patients of type 2 diabetes. Materials and Methods: The study was carried out in 200 individuals aged between 40-65 years consisting of 100 diagnosed cases of Type 2 Diabetes Mellitus and 100 non-diabetics from OPD of Mc Gann Hospital, Shivamogga. Rye’s Auditory Verbal Learning Test, Verbal Fluency Test and Visual Reproduction Test, Working Digit Span Test and Validation Span Test were used to assess short-term and working memory. Fasting and Post Prandial blood sugar levels were estimated. Statistical analysis was done using SPSS 21. Results: Memory test scores of type 2 diabetics were significantly reduced (p < 0.001) when compared to the memory scores of age and gender matched non-diabetics. Fasting blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.837), VFT (r=-0.888), VRT(r=-0.787), WDST (r=-0.795) and VST (r=-0.943). Post- Prandial blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.922), VFT (r=-0.848), VRT(r=-0.707),WDST (r=-0.729) and VST (r=-0.880) Memory scores in all 5 tests were found to be negatively correlated with the FBS and PPBS levels in diabetic patients (p < 0.001). Conclusion: The decreased memory status in diabetic patients may be due to many factors like hyperglycemia, vascular disease, insulin resistance, amyloid deposition and also some of the factor combine to produce additive effects like, type of diabetes, co-morbidities, age of onset, duration of the disease and type of therapy. These observed effects of blood sugar levels of diabetics on memory status are of potential clinical importance because even mild cognitive impairment could interfere with todays’ activities.Keywords: diabetes, cognition, diabetes, HRV, respiratory medicine
Procedia PDF Downloads 283392 Influence оf Viscous Dampers on Seismic Response оf Isolated Bridges Including Soil Structure Interaction
Authors: Marija Vitanova, Aleksandra Bogdanovic, Kemal Edip, Viktor Hristovski, Vlado Micov
Abstract:
Bridges represent critical structures in lifeline systems. They provide reliable modes of transportation, so their failure can seriously obstruct relief and rehabilitation work. Earthquake ground motions can cause significant damages in bridges, so during the strong earthquakes, they can easily collapse. The base isolation technique has been quite effective in seismic response mitigation of the bridges in reducing the piers base shear. The effect of soil structure interaction on the dynamic responses of seismically isolated three span girder bridge with viscous dampers is investigated. Viscous dampers are installed in the mid span of the bridge to control bearing displacement. The soil surrounding the foundation of piers has been analyzed by applying different soil densities in order to consider the soil stiffness. The soil medium has been assumed as a four layered infill as dense and loose medium. The boundaries in the soil medium are considered as infinite elements in order to absorb the radiating waves. The formulation of infinite elements is the same as for the finite elements in addition to the mapping of the domain. Based on the iso-parametric concept, the infinite element in global coordinate is mapped onto an element in local coordinate system. In the formulation of the infinite element, only the positive direction extends to infinity thus allowing the waves to propagate outside of the soil medium. Dynamic analyses for two levels of earthquake intensity are performed in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the isolated and controlled isolated bridges are compared. It is observed that the soil surrounding the piers has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with the installation of the viscous dampers.Keywords: viscous dampers, reinforced concrete girder bridges, seismic response, SSI
Procedia PDF Downloads 124391 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads
Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh
Abstract:
Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC
Procedia PDF Downloads 132390 The Story of a Spoiled Identity: Blogging on Disability and Feminity
Authors: Anna Ślebioda
Abstract:
The paper discusses intersections between disability and femininity. Their imbrication may impede negotiation of identity. The analysis of a blog of a women with disability aims to prove this hypothesis. It involves 724 entries written in the span of six years. The conceptual framework for the considerations constitute the concepts of stigma and spoiled identity, and overlapping elements of femininity and disability. The empirical part comprises content analysis. It allows to locate the narrative on femininity and disability within the dimensions of imbricated categories described in the theoretical part. The results demonstrate aspects to consider in further research on identity in women with disabilities.Keywords: disability, femininity, spoiled identity, stigma
Procedia PDF Downloads 666