Search results for: shrinkage cracking
440 Cracking Mode and Path in Duplex Stainless Steels Failure
Authors: Faraj A. E. Alhegagi, Bassam F. A. Alhajaji
Abstract:
Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester.Keywords: austenite ductile tear off, cracking mode, ferrite cleavage, stainless steels failure
Procedia PDF Downloads 144439 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach
Authors: Alok S Chauhan, Sridhar S., Pradyumna R.
Abstract:
In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation
Procedia PDF Downloads 373438 Evaluation of Modified Asphalt Mixture with Hospital Spun-Bond Waste for Enhanced Crack Resistance
Authors: Ziba Talaeizadeh, Taghi Ebadi
Abstract:
Hospitals and medical centers generate a wide array of infectious waste on a daily basis, leading to pressing environmental concerns associated with proper disposal. Disposable plastic items and spun-bond clothing, commonly made from polypropylene, pose a significant risk of disease transmission, necessitating specialized waste management strategies. Incorporating these materials into bituminous asphalt production offers a potential solution, as it can modify asphalt mixtures and reduce susceptibility to cracking. This study aims to assess the crack resistance of asphalt mixtures modified with hospital spun-bond waste. Asphalt mixtures were prepared using the Marshall method, with spun-bond waste added in varying proportions (5% to 20%). The Semi-Circular Bending (SCB) test was conducted to evaluate asphalt fracture behavior under Mode I loading at controlled speeds of 5, 20, and 50 millimeters per minute and an average temperature of 25°C. Parameters such as fracture energy (FE) and Crack Resistance Index (CRI) were quantified. The results indicate that the addition of 10% to 15% spun-bond polypropylene polymer enhances the performance of the modified mixture, resulting in an 18% increase in fracture energy and an 11% reduction in cracking stiffness compared to the control sample. Further investigations involving factors like compaction level, bitumen type, and aggregate grading are recommended to address medical waste management and mitigate asphalt pavement cracking issues.Keywords: asphalt cracking, hospital waste, semi-circular bending test, spun-bond
Procedia PDF Downloads 59437 Evaluation of Flexural Cracking Width of Steel Fibre Reinforced Concrete Beams
Authors: Touhami Tahenni
Abstract:
Excessively wide cracks are harmful to the serviceability of reinforced concrete (RC) beams and may lead to durability problems in the longer term. They also reduce the rigidity of RC sections, rendering the tensile concrete ineffective structurally. To reduce the negative effects of cracks, steel fibers are added to concrete mixes in the same manner as aggregates. In the present work, steel fibers reinforced concrete (SFRC) beams, made of normal strength and high strength concretes, were tested in a four-point bending test using a digital image correlation technique. The beams had different volume fractions of fibres and different aspect ratios (fiber length/fiber diameter). The evaluation of flexural cracking widths was determined using Gom-Aramis software. The experimental crack widths were compared with theoretical values predicted by the technical document of Rilem TC 162-TDF. The model proposed in this document seems to be the only one that considers the efficiency of steel fibres in restraining the crack widths. However, the model of Rilem takes into account only the aspect ratio of steel fibres to predict the crack width of SFRC beams. It has been reported in several pieces of research that the contribution of steel fibres to the limitation of flexural cracking widths is based on three essential parameters namely, the volume fraction, the orientation and the aspect ratio of fibres. Referring to the literature on the flexural cracking behavior of SFRC beams and the experimental observations of the present work, a correction of the Rilem model by the introduction of these parameters in the formula is proposed. The crack widths predicted by the new empirical model were compared with the experimental results and assessed against other test data on SFRC beams taken from the literature. The modified Rilem model gives better results and is found more satisfactory in predicting the crack widths of fibres concrete.Keywords: stee fibres, reinforced concrete, flexural cracking, tensile strength, crack width
Procedia PDF Downloads 96436 Method for Predicting the Deformation of a Swelling Clay of the Region of N’Gaous (Batna, in Algeria)
Authors: Ferrah F., Baheddi M.
Abstract:
This study relates to how water content in some clay soils affects their structure by increasing or decreasing the volume. These cyclic phenomena of swelling-shrinkage cause parasitic stresses in structures and at the foundation. These stresses create damage in buildings, highways, pavements, airports and structures lightly loaded. This study was conducted on soil from a site near the hospital of N'gaous (Batna), whose soil is at the origin of cracks in the filler walls of the hospital. After a few years of exploitation, and according to the findings of experts in subdivision of construction and urbanism (SUCH), cracks appeared just after the heavy rains that the region experienced in 1987. Our study shows the need to become aware of the importance of damages occasioned by swellings by adopting construction techniques to solve this problem. The study is to determine a methodology to take into account the effects of swelling in calculating long-term foundations.Keywords: clay, swelling, shrinkage, swelling pressure, compressibility
Procedia PDF Downloads 30435 Variations in Wood Traits across Major Gymnosperm and Angiosperm Tree Species and the Driving Factors in China
Authors: Meixia Zhang, Chengjun Ji, Wenxuan Han
Abstract:
Many wood traits are important functional attributes for tree species, connected with resource competition among species, community dynamics, and ecosystem functions. Large variations in these traits exist among taxonomic categories, but variation in these traits between gymnosperms and angiosperms is still poorly documented. This paper explores the systematic differences in 12 traits between the two tree categories and the potential effects of environmental factors and life form. Based on a database of wood traits for major gymnosperm and angiosperm tree species across China, the values of 12 wood traits and their driving factors in gymnosperms vs. angiosperms were compared. The results are summarized below: i) Means of wood traits were all significantly lower in gymnosperms than in angiosperms. ii) Air-dried density (ADD) and tangential shrinkage coefficient (TSC) reflect the basic information of wood traits for gymnosperms, while ADD and radial shrinkage coefficient (RSC) represent those for angiosperms, providing higher explanation power when used as the evaluation index of wood traits. iii) For both gymnosperm and angiosperm species, life form exhibits the largest explanation rate for large-scale spatial patterns of ADD, TSC (RSC), climatic factors the next, and edaphic factors have the least effect, suggesting that life form is the dominant factor controlling spatial patterns of wood traits. Variations in the magnitude and key traits between gymnosperms and angiosperms and the same dominant factors might indicate the evolutionary divergence and convergence in key functional traits among woody plants.Keywords: allometry, functional traits, phylogeny, shrinkage coefficient, wood density
Procedia PDF Downloads 276434 Demographic Shrinkage and Reshaping Regional Policy of Lithuania in Economic Geographic Context
Authors: Eduardas Spiriajevas
Abstract:
Since the end of the 20th century, when Lithuania regained its independence, a process of demographic shrinkage started. Recently, it affects the efficiency of implementation of actions related to regional development policy and geographic scopes of created value added in the regions. The demographic structures of human resources reflect onto the regions and their economic geographic environment. Due to reshaping economies and state reforms on restructuration of economic branches such as agriculture and industry, it affects the economic significance of services’ sector. These processes influence the competitiveness of labor market and its demographic characteristics. Such vivid consequences are appropriate for the structures of human migrations, which affected the processes of demographic ageing of human resources in the regions, especially in peripheral ones. These phenomena of modern times induce the demographic shrinkage of society and its economic geographic characteristics in the actions of regional development and in regional policy. The internal and external migrations of population captured numerous regional economic disparities, and influenced on territorial density and concentration of population of the country and created the economies of spatial unevenness in such small geographically compact country as Lithuania. The processes of territorial reshaping of distribution of population create new regions and their economic environment, which is not corresponding to the main principles of regional policy and its power to create the well-being and to promote the attractiveness for economic development. These are the new challenges of national regional policy and it should be researched in a systematic way of taking into consideration the analytical approaches of regional economy in the context of economic geographic research methods. A comparative territorial analysis according to administrative division of Lithuania in relation to retrospective approach and introduction of method of location quotients, both give the results of economic geographic character with cartographic representations using the tools of spatial analysis provided by technologies of Geographic Information Systems. A set of these research methods provide the new spatially evidenced based results, which must be taken into consideration in reshaping of national regional policy in economic geographic context. Due to demographic shrinkage and increasing differentiation of economic developments within the regions, an input of economic geographic dimension is inevitable. In order to sustain territorial balanced economic development, there is a need to strengthen the roles of regional centers (towns) and to empower them with new economic functionalities for revitalization of peripheral regions, and to increase their economic competitiveness and social capacities on national scale.Keywords: demographic shrinkage, economic geography, Lithuania, regions
Procedia PDF Downloads 161433 In Situ Analysis of the Effect of Twinning on Deformation and Cracking of Magnesium Alloy
Authors: Chaoqun Zhao, Gang Fang
Abstract:
Twinning is an important deformation mechanism of magnesium alloys, but there is no consensus on the relationship between twinning and ductility. To comprehensively understand the effect of twinning on plastic deformation and cracking, the in situ tensile tests of a magnesium alloy sample along its extrusion direction were conducted, accompanied by the observations using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The misorientation angles around specific axes and trace analysis of grains were used to identify the active twinning systems. The results show that the area fraction of tension twins increases with the increasing strain, resulting in the c-axes of most grains rotating from the normal direction to the transverse direction, and the intensity of (0002) pole is weakened. Based on the analysis of kernel average misorientation (KAM) and SEM maps, it is found that the appearance of tension twins accommodates plastic deformation. However, the stress concentration caused by the intersection of tension twinning with the second phase can lead to crack initiation, and the crack propagates along the direction perpendicular to the tension twinning. For contraction twinning, it plays a role in plastic relaxation and improving strain compatibility during deformation, and is not a necessary potential mechanism of crack nucleation.Keywords: magnesium alloy, cracking, in-situ EBSD, twinning
Procedia PDF Downloads 26432 An Overview of Sludge Utilization into Fired Clay Brick
Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim
Abstract:
Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.Keywords: fired clay brick, sludge waste, compressive strength, shrinkage, water absorption
Procedia PDF Downloads 446431 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking
Procedia PDF Downloads 156430 Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes
Authors: Mithil Pandey, Ragunathan Bala Subramanian
Abstract:
One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst.Keywords: catalysts, fluid catalytic cracking, industrial processes, zeolite
Procedia PDF Downloads 354429 Optimizing Hydrogen Production from Biomass Pyro-Gasification in a Multi-Staged Fluidized Bed Reactor
Authors: Chetna Mohabeer, Luis Reyes, Lokmane Abdelouahed, Bechara Taouk
Abstract:
In the transition to sustainability and the increasing use of renewable energy, hydrogen will play a key role as an energy carrier. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Pyro-gasification allows the conversion of organic matter mainly into synthesis gas, or “syngas”, majorly constituted by CO, H2, CH4, and CO2. A second, condensable fraction of biomass pyro-gasification products are “tars”. Under certain conditions, tars may decompose into hydrogen and other light hydrocarbons. These conditions include two types of cracking: homogeneous cracking, where tars decompose under the effect of temperature ( > 1000 °C), and heterogeneous cracking, where catalysts such as olivine, dolomite or biochar are used. The latter process favors cracking of tars at temperatures close to pyro-gasification temperatures (~ 850 °C). Pyro-gasification of biomass coupled with water-gas shift is the most widely practiced process route for biomass to hydrogen today. In this work, an innovating solution will be proposed for this conversion route, in that all the pyro-gasification products, not only methane, will undergo processes that aim to optimize hydrogen production. First, a heterogeneous cracking step was included in the reaction scheme, using biochar (remaining solid from the pyro-gasification reaction) as catalyst and CO2 and H2O as gasifying agents. This process was followed by a catalytic steam methane reforming (SMR) step. For this, a Ni-based catalyst was tested under different reaction conditions to optimize H2 yield. Finally, a water-gas shift (WGS) reaction step with a Fe-based catalyst was added to optimize the H2 yield from CO. The reactor used for cracking was a fluidized bed reactor, and the one used for SMR and WGS was a fixed bed reactor. The gaseous products were analyzed continuously using a µ-GC (Fusion PN 074-594-P1F). With biochar as bed material, it was seen that more H2 was obtained with steam as a gasifying agent (32 mol. % vs. 15 mol. % with CO2 at 900 °C). CO and CH4 productions were also higher with steam than with CO2. Steam as gasifying agent and biochar as bed material were hence deemed efficient parameters for the first step. Among all parameters tested, CH4 conversions approaching 100 % were obtained from SMR reactions using Ni/γ-Al2O3 as a catalyst, 800 °C, and a steam/methane ratio of 5. This gave rise to about 45 mol % H2. Experiments about WGS reaction are currently being conducted. At the end of this phase, the four reactions are performed consecutively, and the results analyzed. The final aim is the development of a global kinetic model of the whole system in a multi-stage fluidized bed reactor that can be transferred on ASPEN PlusTM.Keywords: multi-staged fluidized bed reactor, pyro-gasification, steam methane reforming, water-gas shift
Procedia PDF Downloads 138428 Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams
Authors: Mostefa Hamrat, Bensaid Boulekbache, Mohamed Chemrouk, Sofiane Amziane
Abstract:
The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members.Keywords: beams, digital image correlation (DIC), deflection, crack width, serviceability, codes provisions
Procedia PDF Downloads 335427 The Valorisation of Dredged Sediment in the Self Compacting Concrete
Authors: N. Bouhamou, F. Mostefa, A. Mebrouki, N. Belas
Abstract:
Every year, millions of cube meters are dredged from dams and restraints as an entertaining and prevention procedure all over the world. These dredged sediments are considered as natural waste leading to an environmental, ecological and even an economical problem in their processing and deposing. Nevertheless, in the context of the sustainable development policy, a way of management is opened aiming to the valorization of sediments as a building material and particularly as a new binder that can be industrially exploited and that improve the physical, chemical and mechanical characteristics of the concrete. This study is a part of the research works realized in the civil engineering department at the university of Mostaganem (Algeria), on the impact of the dredged mud of Fergoug dam on the behaviour of self-consolidating concrete in fresh and hardened state, such as the mechanical performance of SCC and its impact on the differed deformations (shrinkage). The work aims to valorize this mud in SCC and to show eventual interactions between constituents. The results obtained presents a good perspectives in order to perform SCC based in calcined mud.Keywords: sediment, calcination, reuse, self-consolidating concrete, fresh state, hard state, shrinkage
Procedia PDF Downloads 388426 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance
Authors: Benmalek M. Larbi, R. Harbi, S. Boukor
Abstract:
This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.Keywords: clay brick waste, mortar, properties, quarry sand
Procedia PDF Downloads 262425 Clinical Effectiveness of Bulk-fill Resin Composite: A Review
Authors: Taraneh Estedlal
Abstract:
The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties.PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing incidence of fractures, color stability, marginal adaptation, pain and discomfort, recurrent caries, occlusion, pulpal reaction, and proper proximal contacts of restorations made with conventional and bulk resins. The failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites. The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties. PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing one of the pearlier mentioned properties between bulk-fill and control composites. Despite differences in physical and in-vitro properties, failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites.Keywords: polymerization shrinkage, color stability, marginal adaptation, recurrent caries, occlusion, pulpal reaction
Procedia PDF Downloads 145424 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement
Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas
Abstract:
The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor
Procedia PDF Downloads 91423 Effect of Packaging Treatment and Storage Condition on Stability of Low Fat Chicken Burger
Authors: Mohamed Ahmed Kenawi Abdallah
Abstract:
Chemical composition, cooking loss, shrinkage value, texture coefficient indices, Feder value, microbial examination, and sensory evaluation were done in order to examine the effect of adding 15% germinated quinoa seeds flour as extender to chicken wings meat to produce low fat chicken burger, packaged in two different packing materials and stored frozen for nine months. The data indicated reduction in the moisture content, crude either extract, and increase in the ash content, pH value, and total acidity for the samples extended by quinoa flour compared with the control one. The data showed that the extended samples with quinoa flour had the lowest values of TBA, cooking loss, and shrinkage value compared with the control ones. The data also revealed that, the sample contained quinoa flour had total bacterial count and psychrophilic bacterial count lower than the control sample. In addition, it has higher evaluation values for overall acceptability than the control one.Keywords: chicken wings, low fat chicken burger, quinoa flour, vacuum packaging.
Procedia PDF Downloads 102422 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment
Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov
Abstract:
This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics
Procedia PDF Downloads 305421 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood
Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi
Abstract:
Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls
Procedia PDF Downloads 69420 Mechanical Performance of Geopolymeric Mortars Based on Natural Clay, Fly Ash and Metakaolin
Authors: W. Tahri, B. Samet, F. Pacheco-Torgal, J. L. Barroso de Aguiar, S. Baklouti
Abstract:
Infrastructure rehabilitation represents a multitrillion dollar opportunity for the construction industry. Since the majority of the existent infrastructures are Portland cement concrete based this means that concrete infrastructure rehabilitation is a hot issue to be dealt with. Geopolymers are novel inorganic binders with high potential to replace Portland cement based ones. So far very few studies in the geopolymer field have addressed the rehabilitation of deteriorated concrete structures. This paper discloses results of an investigation concerning the development geopolymeric repair mortars. The mortars are based on Tunisian natural clay plus calcium hydroxide, sodium silicate and sodium hydroxide. Results show that the geopolymeric mortar has a high compressive strength and a lower unrestrained shrinkage performance as long as partial replacement by metakaolin is carried out. The results also show that Tunisian calcined clay based mortars have hydration products with typical geopolymeric phases.Keywords: geopolymeric mortars, infrastructure repair, compressive strength, shrinkage
Procedia PDF Downloads 329419 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone
Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya
Abstract:
Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel
Procedia PDF Downloads 167418 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste
Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster
Abstract:
Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials
Procedia PDF Downloads 252417 Adverse Curing Conditions and Performance of Concrete: Bangladesh Perspective
Authors: T. Manzur
Abstract:
Concrete is the predominant construction material in Bangladesh. In large projects, stringent quality control procedures are usually followed under the supervision of experienced engineers and skilled labors. However, in the case of small projects and particularly at distant locations from major cities, proper quality control is often an issue. It has been found from experience that such quality related issues mainly arise from inappropriate proportioning of concrete mixes and improper curing conditions. In most cases external curing method is followed which requires supply of adequate quantity of water along with proper protection against evaporation. Often these conditions are found missing in the general construction sites and eventually lead to production of weaker concrete both in terms of strength and durability. In this study, an attempt has been made to investigate the performance of general concreting works of the country when subjected to several adverse curing conditions that are quite common in various small to medium construction sites. A total of six different types of adverse curing conditions were simulated in the laboratory and samples were kept under those conditions for several days. A set of samples was also submerged in normal curing condition having proper supply of curing water. Performance of concrete was evaluated in terms of compressive strength, tensile strength, chloride permeability and drying shrinkage. About 37% and 25% reduction in 28-day compressive and tensile strength were observed respectively, for samples subjected to most adverse curing condition as compared to the samples under normal curing conditions. Normal curing concrete exhibited moderate permeability (close to low permeability) whereas concrete under adverse curing conditions showed very high permeability values. Similar results were also obtained for shrinkage tests. This study, thus, will assist concerned engineers and supervisors to understand the importance of quality assurance during the curing period of concrete.Keywords: adverse, concrete, curing, compressive strength, drying shrinkage, permeability, tensile strength
Procedia PDF Downloads 201416 Pullout Strength of Textile Reinforcement in Concrete by Embedded Length and Concrete Strength
Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park
Abstract:
The deterioration of the reinforced concrete is continuously accelerated due to aging of the reinforced concrete, enlargement of the structure, increase if the self-weight due to the manhattanization and cracking due to external force. Also, due to the abnormal climate phenomenon, cracking of reinforced concrete structures is accelerated. Therefore, research on the Textile Reinforced Concrete (TRC) which replaced reinforcement with textile is under study. However, in previous studies, adhesion performance to single yarn was examined without parameters, which does not reflect the effect of fiber twisting and concrete strength. In the present paper, the effect of concrete strength and embedded length on 2400tex (gram per 1000 meters) and 640tex textile were investigated. The result confirm that the increasing compressive strength of the concrete did not affect the pullout strength. However, as the embedded length increased, the pullout strength tended to increase gradually, especially at 2400tex with more twists.Keywords: textile, TRC, pullout, strength, embedded length, concrete
Procedia PDF Downloads 402415 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables
Authors: Marianna Maiaru, Gregory M. Odegard
Abstract:
During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling
Procedia PDF Downloads 92414 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy
Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly
Abstract:
In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening
Procedia PDF Downloads 72413 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips
Authors: Djamal Atlaoui, Youcef Bouafia
Abstract:
This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear
Procedia PDF Downloads 133412 Improvement of Compressive and Tensile Strengths of Concrete Using Polypropylene Fibers
Authors: Omar Asad Ahmad, Mohammed Awwad
Abstract:
Concrete is one of the essential elements that used in different types of construction these days, but it has many problems when interacts with environmental elements such as water, air, temperature, dust, and humidity. Also concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These disadvantages make concrete limited to use in certain conditions. The most common problems appears on concrete are manifested by tearing, cracking, corrosion and spalling, which will lead to do some defect in concrete then in the whole construction, The fundamental objective of this research was to provide information about the hardened properties of concrete achieved by using easily available local raw materials in Jordan to support the practical work with partners in assessing the practicability of the mixes with polypropylene, and to facilitate the introduction of polypropylene fiber concrete (PFC) technology into general construction practice. Investigate the effect of the polypropylene fibers in PCC mixtures and on materials properties such as compressive strength, and tensile strength. Also to investigate the use of polypropylene fibers in plain cubes and cylindrical concrete to improve its compressive and tensile strengths to reduce early cracking and inhibit later crack growth. Increasing the hardness of concrete in this research is the main purpose to measure the deference of compressive strength and tensile strength between plain concrete and concrete mixture with polypropylene fibers different additions and to investigate its effect on reducing the early and later cracking problem. To achieve the goals of research 225 concrete test sample were prepared to measure it’s compressive strength and tensile strength, the concrete test sample were three classes (A,B,C), sub-classified to standard , and polypropylene fibers added by the volume of concrete (5%, 10%, 15%, and 20%). The investigation of polypropylene fibers mixture with concrete shows that the strengths of the cement are increased and the cracking decreased. The results show that for class A the recommended addition were 5% of polypropylene fibers additions for compressive strength and 10 % for tensile strength revels the best compressive strength that reach 26.67 Mpa and tensile strength that reach 2.548 Mpa records. Achieved results show that for classes B and C the recommend additions were 10 % polypropylene fibers revels the best compressive strength records where they reach 21.11 and 33.78 Mpa, records reach for tensile strength 2.707 and 2.65 Mpa respectively.Keywords: polypropylene, effects, compressive, tensile, strengths, concrete, construction
Procedia PDF Downloads 544411 The Effect of H2S on Crystal Structure
Authors: C. Venkataraman B. E., J. Nagarajan B. E., V. Srinivasan M. Tech
Abstract:
For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries.Keywords: crystal structure deformation, failure assessment, alloy-environment combination, H2S
Procedia PDF Downloads 401