Search results for: quasi-dimensional combustion
628 Environmental Risk Assessment for Beneficiary Use of Coal Combustion Residues Using Leaching Environmental Assessment Framework
Authors: D. V. S. Praneeth, V. R. Sankar Cheela, Brajesh Dubey
Abstract:
Coal Combustion (CC) residues are the major by-products from thermal power plants. The disposal of ash on to land creates havoc to environment and humans. The leaching of the constituent elements pollutes ground water. Beneficiary use of coal combustion residues in structural components is being investigated as a part of this study. This application reduces stress on the convention materials in the construction industry. The present study involves determination of leaching parameters of the CC residues. Batch and column studies are performed based on Leaching Environmental Assessment Framework (LEAF) protocol. The column studies are conducted to simulate the real time percolation conditions in the field. The structural and environmental studies are performed to determine the usability of CC residues as bricks. The physical, chemical, geo environmental and mechanical properties of the alternate materials are investigated. Scanning electron microscopy (SEM), X-Ray Diffraction analysis (XRD), X-ray fluorescence (XRF) and Energy Dispersive X-ray Spectroscopy tests were conducted to determine the characteristics of CC residue ash and bricks.Keywords: coal combustion residues, LEAF, leaching, SEM
Procedia PDF Downloads 314627 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System
Authors: Daniel José de Oliveira Ferreira, Juan Harold Sosa-Arnao, Bruno Cássio Moreira, Leonardo Paes Rangel, Song Won Park
Abstract:
The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugar-cane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, super heaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows to observe some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.Keywords: comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler, axial
Procedia PDF Downloads 472626 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine
Authors: Anas Rao, Hao Duan, Fanhua Ma
Abstract:
The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet
Procedia PDF Downloads 251625 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling
Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski
Abstract:
A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, ignition, simulation, timing
Procedia PDF Downloads 296624 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 108623 Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber
Authors: Vladislav A. Nazukin, Valery G. Avgustinovich, Vakhtang V. Tsatiashvili
Abstract:
The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations.Keywords: DES simulation, swirler, vortical structures, combustion chamber
Procedia PDF Downloads 352622 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature
Procedia PDF Downloads 129621 Laminar Burning Velocity NH₃/H₂+Air Mixtures at Elevated Temperatures and Pressures
Authors: Talal Hasan, Akram Mohammad
Abstract:
Carbon-free combustion has great attention in today’s research for its unlimited benefits regarding various factors, and ammonia is considered a potential carbon-free alternative gas despite its flame characteristics. The Shrestha mechanism and Chemkin-Pro software will be used for numerical data. Firstly, experimental and numerical results should show good agreement to move for studying the laminar flame speed of ammonia under various conditions. Ammonia flame speed will be investigated under normal conditions (298 K, 1 atm) as well as under the influence of a range of equivalence ratios (0.6-1.8), elevated temperatures (298,323,373,423, and 473), elevated pressures (1 atm- 70 atm) and finally at varying hydrogen content (0-100%). Therefore, this work will understand the ammonia laminar flame speed characteristics and how and to what extent hydrogen can improve ammonia combustion intensity.Keywords: laminar burning velocity, ammonia, hydrogen, combustion
Procedia PDF Downloads 107620 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships
Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis
Abstract:
The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture
Procedia PDF Downloads 78619 Biodiesel Is an Alternative Fuel for CI Engines
Authors: Sanat Kumar, Rahul Kumar Tiwari
Abstract:
At this time when society is becoming increasingly aware of the declining reserves of fossil, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. In this regard, the significance of biodiesel is technically and commercially viable alternative to fossil-diesel. There are different potential feed stocks for biodiesel production. This paper analyses the performance, combustion and emission characteristics of biodiesel from different feed stocks. Biodiesel fuel is considered as offering many benefits like reduction of greenhouse gas emissions and many harmful pollutants (PM, HC, CO etc.). This paper critically reviews the effect of injection timing on combustion and emission characteristics. An attempt has been carried out to discuss the effect of biodiesel in terms of combustion, emission and performance based up on composition and properties. The results of the study show that different chemical composition leads to variation in its combustion, performance and emission characteristics. Biodiesel produced from different aspired feed stocks reduces the pollutant emission and resistive to oxidation but exhibit poor atomization. As a conclusion many research needs to be carried out to understand the relationship between the types of biodiesel feed stock, performance conclusion and emission.Keywords: atomization, biodiesel, greenhouse gas, oxidation
Procedia PDF Downloads 567618 Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber
Authors: Olga V. Korotkaya
Abstract:
This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modelling, substructure method, cyclic symmetry, and finite element method. The calculation has been carried out to order of S. P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems.Keywords: combustion chamber, cyclic symmetry, finite element method, liquid-propellant rocket engine, nozzle end, substructure
Procedia PDF Downloads 506617 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine
Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali
Abstract:
Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.Keywords: droplet collision, coalescence, low speed, diesel fuel
Procedia PDF Downloads 236616 Chemistry and Sources of Solid Biofuel Derived Ambient Aerosols during Cooking and Non-Cooking Hours in Rural Area of Khairatpur, North-Central India
Authors: Sudha Shukla, Bablu Kumar, Gyan Prakash Gupta, U. C. Kulshrestha
Abstract:
Air pollutants emitted from solid biofuels during cooking are the major contributors to poor air quality, respiratory problems, and radiative forcing, etc. in rural areas of most of developing countries. The present study reports the chemical characteristics and sources of ambient aerosols and traces gases during cooking and non-cooking hours emitted during biofuel combustion in a village in North-Central India. Fine aerosol samples along with gaseous species (Sox, NOx, and NH₃) were collected during September 2010-March 2011 at Khairatpur village (KPV) which is located in the Uttar Pradesh state in North-Central India. Results indicated that most of the major ions in aerosols and Sox, NOx, and NH₃ gases were found to be higher during cooking hours as compared to non-cooking hours suggesting that solid biofuel combustion is an important source of air pollution. Results of Principal Component Analysis (PCA) revealed that combustion of solid biofuel, vehicular emissions, and brick kilns were the major sources of fine aerosols and trace gases in the village. A health survey was conducted to find out the relation between users of biofuels and their health effects and the results revealed that most of the women in the village were suffering from diseases associated with biofuel combustion during cooking.Keywords: ambient aerosols, biofuel combustion, cooking, health survey, rural area
Procedia PDF Downloads 240615 Modelling and Simulation of Biomass Pyrolysis
Authors: P. Ahuja, K. S. S. Sai Krishna
Abstract:
There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat.Keywords: biomass, fluidisation, pyrolysis, simulation
Procedia PDF Downloads 341614 Flame Dynamics in Small Scale Channels
Authors: Mohammed Mahmoud Osman Ahmed, Akram Mohammad
Abstract:
Flame dynamics in heated quartz glass channels of various aspect ratios (2,5,10,15) were experimentally investigated. A premixed Propane-air mixture was used for the reported experiments. Regarding micro-combustion, flame quenching is considered to be the most crucial problem to overcome first. Experiments were carried out on four channels with different aspect ratios. The results show that at a very low equivalence ratio ϕ=0.4, there is no flame inside the channels. The FREI condition (Flame with repetitive extinction and ignition) was overcome by increasing velocity and by making the channels more in contact with the external heater. The flame tested inside the channels at different locations for V=0.3 m/s or higher below V=0.65 m/s. The effects of equivalence ratio and flow velocity on the characteristics of combustion in the channels were examined. Different ways of flame propagation were observed in the current investigations based on how they appear as planar, concave and convex flames.Keywords: flame stabilization, combustion, flame dynamics, small-scale channels, external heater
Procedia PDF Downloads 228613 Impact of Different Fuel Inlet Diameters onto the NOx Emissions in a Hydrogen Combustor
Authors: Annapurna Basavaraju, Arianna Mastrodonato, Franz Heitmeir
Abstract:
The Advisory Council for Aeronautics Research in Europe (ACARE) is creating awareness for the overall reduction of NOx emissions by 80% in its vision 2020. Hence this promotes the researchers to work on novel technologies, one such technology is the use of alternative fuels. Among these fuels hydrogen is of interest due to its one and only significant pollutant NOx. The influence of NOx formation due to hydrogen combustion depends on various parameters such as air pressure, inlet air temperature, air to fuel jet momentum ratio etc. Appropriately, this research is motivated to investigate the impact of the air to fuel jet momentum ratio onto the NOx formation in a hydrogen combustion chamber for aircraft engines. The air to jet fuel momentum is defined as the ratio of impulse/momentum of air with respect to the momentum of fuel. The experiments were performed in an existing combustion chamber that has been previously tested for methane. Premix of the reactants has not been considered due to the high reactivity of the hydrogen and high risk of a flashback. In order to create a less rich zone of reaction at the burner and to decrease the emissions, a forced internal recirculation flow has been achieved by integrating a plate similar to honeycomb structure, suitable to the geometry of the liner. The liner has been provided with an external cooling system to avoid the increase of local temperatures and in turn the reaction rate of the NOx formation. The injected air has been preheated to aim at so called flameless combustion. The air to fuel jet momentum ratio has been inspected by changing the area of fuel inlets and keeping the number of fuel inlets constant in order to alter the fuel jet momentum, thus maintaining the homogeneity of the flow. Within this analysis, promising results for a flameless combustion have been achieved. For a constant number of fuel inlets, it was seen that the reduction of the fuel inlet diameter resulted in decrease of air to fuel jet momentum ratio in turn lowering the NOx emissions.Keywords: combustion chamber, hydrogen, jet momentum, NOx emission
Procedia PDF Downloads 292612 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine
Authors: Hammam Aljabri, Hong G. Im
Abstract:
Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.Keywords: hydrogen, combustion, engine knock, SI engine
Procedia PDF Downloads 129611 Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine
Authors: Bahamin Bazooyar, Xinyan Wang, Hua Zhao
Abstract:
As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars.Keywords: engine, hydrogen, diesel, two-stroke, opposed-piston, decarbonisation
Procedia PDF Downloads 7610 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning
Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag
Abstract:
The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling
Procedia PDF Downloads 91609 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission
Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder
Abstract:
Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR
Procedia PDF Downloads 341608 A Study on Removal of SO3 in Flue Gas Generated from Power Plant
Authors: E. Y. Jo, S. M. Park, I. S. Yeo, K. K. Kim, S. J. Park, Y. K. Kim, Y. D. Kim, C. G. Park
Abstract:
SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts.Keywords: flue gas desulfurization, petroleum cokes, Sulfur trioxide, SO3 removal
Procedia PDF Downloads 521607 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 123606 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure
Procedia PDF Downloads 244605 Speed Ratio Control of Pulley Based V-Belt Type Continuously Variable Transmission (CVT) using Fuzzy Logic Controller
Authors: Ikbal Eski, Turan Gürgenç
Abstract:
After nearly more than a century of research and development, internal combustion engines have become almost perfect. Along with such improvement in internal combustion engines, automotive manufacturers are conducting research on design of alternative fuel vehicles. Nevertheless an ideal interim solution is to increase overall efficiency of internal combustion vehicles. A potential solution to achieve that is using continuously variable transmission system which, despite being an old idea, has recently become a hope for automotive manufacturers. CVT system, by continuously varying speed ratio, raises vehicle efficiency. In this study, fuzzy logic controller is used in speed ratio control of pulley based CVT system.Keywords: continuously variable transmission system, variator, speed ratio, fuzzy logic
Procedia PDF Downloads 285604 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine
Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita
Abstract:
A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation
Procedia PDF Downloads 409603 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol-Gel Method with Participation of Auto-Combustion
Authors: V. S. Bushkova
Abstract:
It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.Keywords: magnetic materials, ferrites, sol-gel technology, nanocrystalline powders
Procedia PDF Downloads 409602 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX
Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu
Abstract:
This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.Keywords: air pollutants, computational fluid dynamics, dispersion, simulation
Procedia PDF Downloads 457601 Study of Dual Fuel Engine as Environmentally Friendly Engine
Authors: Nilam S. Octaviani, Semin
Abstract:
The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine. However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics
Procedia PDF Downloads 307600 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge
Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas
Abstract:
Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions
Procedia PDF Downloads 87599 Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species.Keywords: catalytic combustion, honeycomb monolith, plug flow reactor, surface reactions
Procedia PDF Downloads 226