Search results for: pixel normalization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 410

Search results for: pixel normalization

320 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods

Authors: Auday Al-Mayyahi, Phil Birch, William Wang

Abstract:

A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.

Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor

Procedia PDF Downloads 302
319 Clinical Application of Measurement of Eyeball Movement for Diagnose of Autism

Authors: Ippei Torii, Kaoruko Ohtani, Takahito Niwa, Naohiro Ishii

Abstract:

This paper shows developing an objectivity index using the measurement of subtle eyeball movement to diagnose autism. The developmentally disabled assessment varies, and the diagnosis depends on the subjective judgment of professionals. Therefore, a supplementary inspection method that will enable anyone to obtain the same quantitative judgment is needed. The diagnosis are made based on a comparison of the time of gazing an object in the conventional autistic study, but the results do not match. First, we divided the pupil into four parts from the center using measurements of subtle eyeball movement and comparing the number of pixels in the overlapping parts based on an afterimage. Then we developed the objective evaluation indicator to judge non-autistic and autistic people more clearly than conventional methods by analyzing the differences of subtle eyeball movements between the right and left eyes. Even when a person gazes at one point and his/her eyeballs always stay fixed at that point, their eyes perform subtle fixating movements (ie. tremors, drifting, microsaccades) to keep the retinal image clear. Particularly, the microsaccades link with nerves and reflect the mechanism that process the sight in a brain. We converted the differences between these movements into numbers. The process of the conversion is as followed: 1) Select the pixel indicating the subject's pupil from images of captured frames. 2) Set up a reference image, known as an afterimage, from the pixel indicating the subject's pupil. 3) Divide the pupil of the subject into four from the center in the acquired frame image. 4) Select the pixel in each divided part and count the number of the pixels of the overlapping part with the present pixel based on the afterimage. 5) Process the images with precision in 24 - 30fps from a camera and convert the amount of change in the pixels of the subtle movements of the right and left eyeballs in to numbers. The difference in the area of the amount of change occurs by measuring the difference between the afterimage in consecutive frames and the present frame. We set the amount of change to the quantity of the subtle eyeball movements. This method made it possible to detect a change of the eyeball vibration in numerical value. By comparing the numerical value between the right and left eyes, we found that there is a difference in how much they move. We compared the difference in these movements between non-autistc and autistic people and analyzed the result. Our research subjects consists of 8 children and 10 adults with autism, and 6 children and 18 adults with no disability. We measured the values through pasuit movements and fixations. We converted the difference in subtle movements between the right and left eyes into a graph and define it in multidimensional measure. Then we set the identification border with density function of the distribution, cumulative frequency function, and ROC curve. With this, we established an objective index to determine autism, normal, false positive, and false negative.

Keywords: subtle eyeball movement, autism, microsaccade, pursuit eye movements, ROC curve

Procedia PDF Downloads 278
318 Using Non-Negative Matrix Factorization Based on Satellite Imagery for the Collection of Agricultural Statistics

Authors: Benyelles Zakaria, Yousfi Djaafar, Karoui Moussa Sofiane

Abstract:

Agriculture is fundamental and remains an important objective in the Algerian economy, based on traditional techniques and structures, it generally has a purpose of consumption. Collection of agricultural statistics in Algeria is done using traditional methods, which consists of investigating the use of land through survey and field survey. These statistics suffer from problems such as poor data quality, the long delay between collection of their last final availability and high cost compared to their limited use. The objective of this work is to develop a processing chain for a reliable inventory of agricultural land by trying to develop and implement a new method of extracting information. Indeed, this methodology allowed us to combine data from remote sensing and field data to collect statistics on areas of different land. The contribution of remote sensing in the improvement of agricultural statistics, in terms of area, has been studied in the wilaya of Sidi Bel Abbes. It is in this context that we applied a method for extracting information from satellite images. This method is called the non-negative matrix factorization, which does not consider the pixel as a single entity, but will look for components the pixel itself. The results obtained by the application of the MNF were compared with field data and the results obtained by the method of maximum likelihood. We have seen a rapprochement between the most important results of the FMN and those of field data. We believe that this method of extracting information from satellite data leads to interesting results of different types of land uses.

Keywords: blind source separation, hyper-spectral image, non-negative matrix factorization, remote sensing

Procedia PDF Downloads 423
317 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles

Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy

Abstract:

This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.

Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot

Procedia PDF Downloads 605
316 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 322
315 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 107
314 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 98
313 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
312 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 187
311 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)

Authors: Ismail Elkhrachy

Abstract:

Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.

Keywords: land use, remote sensing, change detection, satellite images, image classification

Procedia PDF Downloads 525
310 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
309 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
308 The Meaningful Pixel and Texture: Exploring Digital Vision and Art Practice Based on Chinese Cosmotechnics

Authors: Xingdu Wang, Charlie Gere, Emma Rose, Yuxuan Zhao

Abstract:

The study introduces a fresh perspective on the digital realm through an examination of the Chinese concept of Xiang, elucidating how it can build an understanding of pixels and textures on screens as digital trigrams. This concept attempts to offer an outlook on the intersection of digital technology and the natural world, thereby contributing to discussions about the harmonious relationship between humans and technology. The study looks for the ancient Chinese theory of Xiang as a key to establishing the theories and practices to respond to the problem of Contemporary Chinese technics. Xiang is a Chinese method of understanding the essentials of things through appearances, which differs from the method of science in the Westen. Xiang, the basement of Chinese visual art, is rooted in ancient Chinese philosophy and connected to the eight trigrams. The discussion of Xiang connects art, philosophy, and technology. This paper connects the meaning of Xiang with the 'truth appearing' philosophically through the analysis of the concepts of phenomenon and noumenon and the unique Chinese way of observing. Hereafter, the historical interconnection between ancient painting and writing in China emphasizes their relationship between technical craftsmanship and artistic expression. In digital, the paper blurs the traditional boundaries between images and text on digital screens in theory. Lastly, this study identified an ensemble concept relating to pixels and textures in computer vision, drawing inspiration from AI image recognition in Chinese paintings. In art practice, by presenting a fluid visual experience in the form of pixels, which mimics the flow of lines in traditional calligraphy and painting, it is hoped that the viewer will be brought back to the process of the truth appearing as defined by the 'Xiang’.

Keywords: Chinese cosmotechnics, computer vision, contemporary Neo-Confucianism, texture and pixel, Xiang

Procedia PDF Downloads 64
307 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 72
306 Hypocalcaemia Inducing Heart Failure: A Rare Presentation

Authors: A. Kherraf, M. Bouziane, L. Azzouzi, R. Habbal

Abstract:

Introduction: Hypocalcaemia is a rare cause of heart failure. We report the clinical case of a young patient with reversible dilated cardiomyopathy secondary to hypocalcaemia in the context of hyperparathyroidism. Clinical case: We report the clinical case of a 23-year-old patient with a history of thyroidectomy for papillary thyroid carcinoma 3 years previously, who presented to the emergency room with a progressive onset dyspnea and edema of the lower limbs. Clinical examination showed hypotension at 90/70 mmHg, tachycardia at 102 bpm, and edema of the lower limbs. The ECG showed a regular sinus rhythm with a prolonged corrected QT interval to 520ms. The chest x-ray showed cardiomegaly. Echocardiography revealed dilated cardiomyopathy with biventricular dysfunction and a left ventricular ejection fraction of 45%, as well as moderate mitral insufficiency by restriction of the posterior mitral leaflet, moderate tricuspid insufficiency, and a dilated inferior vena cava with a pulmonary arterial pressure estimated at 46 mmHg. Blood tests revealed severe hypocalcemia at 38 mg / l with normal albumin and thyroxine levels, as well as hyperphosphatemia and increased TSH. The patient received calcium intake and vitamin D supplementation and was treated with beta blockers, ACE inhibitors, and diuretics with good progress and progressive normalization of cardiac function. Discussion: The cardiovascular manifestations of hypocalcaemia usually appear with deeply low serum calcium levels. This can lead to hypotension, arrhythmias, ventricular fibrillation, prolonged QT interval, or even heart failure. Heart failure is a rare and serious complication of hypocalcemia but most often characterized by complete normalization of myocardial function after treatment. The etiology of the hypocalcaemia, in this case, was probably related to accidental parathyroid removal during thyroidectomy. This is why careful monitoring of calcium levels is recommended after surgery. Conclusion: Hypocalcemic heart failure is rare but reversible heart disease. Systematic monitoring of serum calcium should be performed in all patients after thyroid surgery to avoid any complications related to hypoparathyroidism.

Keywords: hypocalcemia, heart failure, thyroid surgery, hypoparathyroidism

Procedia PDF Downloads 143
305 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm

Authors: El Harraj Abdeslam, Raissouni Naoufal

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes

Procedia PDF Downloads 256
304 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis

Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek

Abstract:

This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.

Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert

Procedia PDF Downloads 145
303 Assessment of Spectral Indices for Soil Salinity Estimation in Irrigated Land

Authors: R. Lhissou , A. El Harti , K. Chokmani, E. Bachaoui, A. El Ghmari

Abstract:

Soil salinity is a serious environmental hazard in many countries around the world especially the arid and semi-arid countries like Morocco. Salinization causes negative effects on the ground; it affects agricultural production, infrastructure, water resources and biodiversity. Remote sensing can provide soil salinity information for large areas, and in a relatively short time. In addition, remote sensing is not limited by extremes in terrain or hazardous condition. Contrariwise, experimental methods for monitoring soil salinity by direct measurements in situ are very demanding of time and resources, and also very limited in spatial coverage. In the irrigated perimeter of Tadla plain in central Morocco, the increased use of saline groundwater and surface water, coupled with agricultural intensification leads to the deterioration of soil quality especially by salinization. In this study, we assessed several spectral indices of soil salinity cited in the literature using Landsat TM satellite images and field measurements of electrical conductivity (EC). Three Landsat TM satellite images were taken during 3 months in the dry season (September, October and November 2011). Based on field measurement data of EC collected in three field campaigns over the three dates simultaneously with acquisition dates of Landsat TM satellite images, a two assessment techniques are used to validate a soil salinity spectral indices. Firstly, the spectral indices are validated locally by pixel. The second validation technique is made using a window of size 3x3 pixels. The results of the study indicated that the second technique provides getting a more accurate validation and the assessment has shown its limits when it comes to assess across the pixel. In addition, the EC values measured from field have a good correlation with some spectral indices derived from Landsat TM data and the best results show an r² of 0.88, 0.79 and 0.65 for Salinity Index (SI) in the three dates respectively. The results have shown the usefulness of spectral indices as an auxiliary variable in the spatial estimation and mapping salinity in irrigated land.

Keywords: remote sensing, spectral indices, soil salinity, irrigated land

Procedia PDF Downloads 391
302 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing

Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama

Abstract:

We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.

Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling

Procedia PDF Downloads 470
301 Performance Analysis of Ad-Hoc Network Routing Protocols

Authors: I. Baddari, A. Riahla, M. Mezghich

Abstract:

Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc.

Keywords: ad-hoc network routing protocol, simulation, NS2, delay, packet loss, wideband, mobility

Procedia PDF Downloads 400
300 The Role of Capitalism, Society, and Media in the Rise of Plastic Surgeries in Egypt

Authors: Rana Saleh

Abstract:

This study explores the introduction and rise of plastic surgery in Egypt, tracing its historical roots and examining its growing prevalence in modern society. Through a qualitative review of existing literature, the research investigates how media, capitalism, and patriarchal societal structures contribute to the normalization of cosmetic surgeries, particularly among women. It delves into the consumer culture created by capitalism and the sexualization of women’s bodies, emphasizing how these factors influence women's perceptions of beauty and their decisions to undergo surgery. The paper also highlights the role of patriarchy in shaping these choices within Egypt’s collectivist society.

Keywords: plastic surgery, Egypt, media, capitalism, sexualization of women’s bodies

Procedia PDF Downloads 17
299 Biimodal Biometrics System Using Fusion of Iris and Fingerprint

Authors: Attallah Bilal, Hendel Fatiha

Abstract:

This paper proposes the bimodal biometrics system for identity verification iris and fingerprint, at matching score level architecture using weighted sum of score technique. The features are extracted from the pre processed images of iris and fingerprint. These features of a query image are compared with those of a database image to obtain matching scores. The individual scores generated after matching are passed to the fusion module. This module consists of three major steps i.e., normalization, generation of similarity score and fusion of weighted scores. The final score is then used to declare the person as genuine or an impostor. The system is tested on CASIA database and gives an overall accuracy of 91.04% with FAR of 2.58% and FRR of 8.34%.

Keywords: iris, fingerprint, sum rule, fusion

Procedia PDF Downloads 369
298 Normalized Compression Distance Based Scene Alteration Analysis of a Video

Authors: Lakshay Kharbanda, Aabhas Chauhan

Abstract:

In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.

Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error

Procedia PDF Downloads 340
297 Web 2.0 Enabling Knowledge-Sharing Practices among Students of IIUM: An Exploration of the Determinants

Authors: Shuaibu Hassan Usman, Ishaq Oyebisi Oyefolahan

Abstract:

This study was aimed to explore the latent factors in the web 2.0 enabled knowledge sharing practices instrument. Seven latent factors were identified through a factor analysis with orthogonal rotation and interpreted based on simple structure convergence, item loadings, and analytical statistics. The number of factors retains was based on the analysis of Kaiser Normalization criteria and Scree plot. The reliability tests revealed a satisfactory reliability scores on each of the seven latent factors of the web 2.0 enabled knowledge sharing practices. Limitation, conclusion, and future work of this study were also discussed.

Keywords: factor analysis, latent factors, knowledge sharing practices, students, web 2.0 enabled

Procedia PDF Downloads 434
296 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array

Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah

Abstract:

High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.

Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging

Procedia PDF Downloads 195
295 Text Data Preprocessing Library: Bilingual Approach

Authors: Kabil Boukhari

Abstract:

In the context of information retrieval, the selection of the most relevant words is a very important step. In fact, the text cleaning allows keeping only the most representative words for a better use. In this paper, we propose a library for the purpose text preprocessing within an implemented application to facilitate this task. This study has two purposes. The first, is to present the related work of the various steps involved in text preprocessing, presenting the segmentation, stemming and lemmatization algorithms that could be efficient in the rest of study. The second, is to implement a developed tool for text preprocessing in French and English. This library accepts unstructured text as input and provides the preprocessed text as output, based on a set of rules and on a base of stop words for both languages. The proposed library has been made on different corpora and gave an interesting result.

Keywords: text preprocessing, segmentation, knowledge extraction, normalization, text generation, information retrieval

Procedia PDF Downloads 94
294 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 19
293 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: free particle, point canonical transformation method, position-dependent mass, staggered mass distribution

Procedia PDF Downloads 404
292 Preservation of Endocrine Function after Central Pancreatectomy without Anastomoses for a Mid Gland Pancreatic Insulinoma: A Case Report

Authors: Karthikeyan M., Paul M. J.

Abstract:

This abstract describes a case of central pancreatectomy (CP) for a 50-year-old woman with a neuroendocrine tumor in the mid-body of the pancreas. CP, a parenchyma-sparing surgical option, preserves the distal pancreas and spleen, reducing the risk of pancreatic endocrine and exocrine insufficiency compared to traditional resections. The patient, initially misdiagnosed with transient ischemic attack, presented with hypoglycemic symptoms and was found to have a pancreatic lesion. Post-operative results were positive, with a reduction in pancreatic drain volume and normalization of blood sugar levels. This case highlights CP's efficacy in treating centrally located pancreatic lesions while maintaining pancreatic function.

Keywords: central pancreatectomy without anastomosis, no endocrine deficiency on follow-op, less post-op hospital stay, less post-op complications

Procedia PDF Downloads 46
291 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389