Search results for: periodic signals
1266 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1091265 Development of Scratching Monitoring System Based on Mathematical Model of Unconstrained Bed Sensing Method
Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system, and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: First experiment is the subject’s scratching the right side cheek with his right hand, and; second experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.Keywords: unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics
Procedia PDF Downloads 4131264 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments
Authors: Mehtap Lafcı
Abstract:
In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments
Procedia PDF Downloads 5151263 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.Keywords: cross-correlation, delay estimation, signal envelope, signal processing
Procedia PDF Downloads 4861262 A Study of Using Different Printed Circuit Board Design Methods on Ethernet Signals
Authors: Bahattin Kanal, Nursel Akçam
Abstract:
Data transmission size and frequency requirements are increasing rapidly in electronic communication protocols. Increasing data transmission speeds have made the design of printed circuit boards much more important. It is important to carefully examine the requirements and make analyses before and after the design of the digital electronic circuit board. It delves into impedance matching techniques, signal trace routing considerations, and the impact of layer stacking on signal performance. The paper extensively explores techniques for minimizing crosstalk issues and interference, presenting a holistic perspective on design strategies to optimize the quality of high-speed signals. Through a comprehensive review of these design methodologies, this study aims to provide insights into achieving reliable and high-performance printed circuit board layouts for these signals. In this study, the effect of different design methods on Ethernet signals was examined from the type of S parameters. Siemens company HyperLynx software tool was used for the analyses.Keywords: HyperLynx, printed circuit board, s parameters, ethernet
Procedia PDF Downloads 361261 Detection of Clipped Fragments in Speech Signals
Authors: Sergei Aleinik, Yuri Matveev
Abstract:
In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.Keywords: clipping, clipped signal, speech signal processing, digital signal processing
Procedia PDF Downloads 3941260 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier
Authors: Abhigna Bhatt, Arnab Banerjee
Abstract:
A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform
Procedia PDF Downloads 1271259 Mathematical Based Forecasting of Heart Attack
Authors: Razieh Khalafi
Abstract:
Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analyzing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behavior of these signals were checked. Results shows this methodology can forecast the ECG and accordingly heart attack with high accuracy.Keywords: heart attack, ECG, random walk, correlation dimension, forecasting
Procedia PDF Downloads 5431258 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals
Authors: Katsumi Hirata
Abstract:
To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position
Procedia PDF Downloads 3601257 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory
Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi
Abstract:
The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation
Procedia PDF Downloads 4631256 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network
Abstract:
In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.Keywords: IP scheduled throughput, E-UTRAN, Evolved Universal Terrestrial Radio Access Network, NTP, Network Time Protocol, assymetric network, delay
Procedia PDF Downloads 3611255 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces
Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba
Abstract:
In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine
Procedia PDF Downloads 4991254 A New Mathematical Method for Heart Attack Forecasting
Authors: Razi Khalafi
Abstract:
Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.Keywords: heart attack, ECG, random walk, correlation dimension, forecasting
Procedia PDF Downloads 5071253 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side
Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue
Abstract:
The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE
Procedia PDF Downloads 2751252 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing
Procedia PDF Downloads 3201251 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller
Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares
Abstract:
The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller
Procedia PDF Downloads 3681250 Vibration Signals of Small Vertical Axis Wind Turbines
Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly
Abstract:
In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.Keywords: Savonius type wind turbine, number of blades, renewable energy, vibration signals
Procedia PDF Downloads 1551249 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition
Procedia PDF Downloads 3331248 Optimizing a Hybrid Inventory System with Random Demand and Lead Time
Authors: Benga Ebouele, Thomas Tengen
Abstract:
Implementing either periodic or continuous inventory review model within most manufacturing-companies-supply chains as a management tool may incur higher costs. These high costs affect the system flexibility which in turn affects the level of service required to satisfy customers. However, these effects are not clearly understood because the parameters of both inventory review policies (protection demand interval, order quantity, etc.) are not designed to be fully utilized under different and uncertain conditions such as poor manufacturing, supplies and delivery performance. Coming up with a hybrid model which may combine in some sense the feature of both continuous and a periodic inventory review models should be useful. Therefore, there is a need to build and evaluate such hybrid model on the annual total cost, stock out probability and system’s flexibility in order to search for the most cost effective inventory review model. This work also seeks to find the optimal sets of parameters of inventory management under stochastic condition so as to optimise each policy independently. The results reveal that a continuous inventory system always incurs lesser cost than a periodic (R, S) inventory system, but this difference tends to decrease as time goes by. Although the hybrid inventory is the only one that can yield lesser cost over time, it is not always desirable but also natural to use it in order to help the system to meet high performance specification.Keywords: demand and lead time randomness, hybrid Inventory model, optimization, supply chain
Procedia PDF Downloads 3141247 Environmental Engineering Case Study of Waste Water Treatement
Authors: Harold Jideofor
Abstract:
Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations.Keywords: wastewater treatment, environmental engineering, waste water
Procedia PDF Downloads 5881246 EEG Signal Processing Methods to Differentiate Mental States
Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon
Abstract:
EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.Keywords: EEG, focus, mental state, outlier, signal processing
Procedia PDF Downloads 2851245 Rich 3-Tori Dynamics in Small-Aspect-Ratio Highly Counter-Rotating Taylor-Couette Flow with Reversal of Spiraling Vortices
Authors: S. Altmeyer, B. Hof, F. Marques, J. M. Lopez
Abstract:
We present numerical simulations concerning the reversal of spiraling vortices in short highly counter-rotating cylinders. Increasing the differential cylinder rotation results in global flow-inversion is which develops various different and complex flow dynamics of several quasi-periodic solutions that differ in their number of vortex cells in the bulk. The dynamics change from being dominated of the inner cylinder boundary layer with ’passive’ only responding outer one to be dominated by the outer cylinder boundary layer with only responding inner one. Solutions exist on either two or three tori invariant manifolds whereby they appear as symmetric or asymmetric states. We find for either moderate and high inner cylinder rotation speed the quasiperiodic flow to consist of only two vortex cells but differ as the vortices has opposite spiraling direction. These both flows live on 2-tori but differ in number of symmetries. While for the quasi-periodic flow (q^a_2) at lower rotation speed a pair of symmetrically related 2-tori T2 exists the quasi-periodic flow (q^s_2) at higher rotation speeds is symmetric living on a single 2-torus T2. In addition these both flows differ due to their dominant azimuthal m modes. The first is dominated by m=1 whereas for the latter m=3 contribution is largest. The 2-tori states are separated by a further quasi-periodic flow (q^a_3) living on pair of symmetrically related 3-tori T3. This flow offers a ’periodical’ competition between a two and three vortex cell states in the bulk. This flow is also an m=1 solution as for the quasiperiodic flows living on the pair of symmetrically-related 2-tori states. Moreover we find hysteresis resulting in coexisting regions of different quasiperiodic flows q^s_2 and q^a_3 with increasing and decreasing the differential rotation.Keywords: transition, bifurcation, torus, symmetries
Procedia PDF Downloads 3581244 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: backstepping control, iterative control, Rehabilitation, ETS-MARSE
Procedia PDF Downloads 2871243 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor
Authors: Jan Doutreloigne
Abstract:
The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.Keywords: audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier
Procedia PDF Downloads 3431242 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts
Authors: Virgil-Florin Duma, Dorin Demian
Abstract:
Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts
Procedia PDF Downloads 1921241 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 1411240 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 6391239 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel
Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki
Abstract:
The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.Keywords: milling of hardened steel, tool wear, vibrations, machine learning
Procedia PDF Downloads 601238 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker
Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee
Abstract:
The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.Keywords: heat transfer, temperature, voice coil, woofer speaker
Procedia PDF Downloads 3601237 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: DBSCAN, potential function, speech signal, the UBSS model
Procedia PDF Downloads 135