Search results for: moving mesh method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19571

Search results for: moving mesh method

19481 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 569
19480 Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro

Authors: Adebola Ajayi, Olakunle M. Makanjuola

Abstract:

The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer.

Keywords: particle sizes, maize flour, quality, Kokoro

Procedia PDF Downloads 179
19479 Form of Social Quality Moving Process of Suburb Communities in a Changing World

Authors: Supannee Chaiumporn

Abstract:

This article is to introduce the meaning and form of social quality moving process as indicated by members of two suburb communities with different social and cultural contexts. The form of social quality moving process is very significant for the community and social development, because it will make the people living together with sustainable happiness. This is a qualitative study involving 30 key-informants from two suburb communities. Data were collected though key-informant interviews, and analyzed using logical content description and descriptive statistics. This research found that on the social quality component, the people in both communities stressed the procedure for social quality-making. This includes the generousness, sharing and assisting among people in the communities. These practices helped making people to live together with sustainable happiness. Living as a family or appear to be a family is the major social characteristic of these two communities. This research also found that form of social quality’s moving process of both communities stress relation of human and nature; “nature overpower humans” paradigm and influence of religious doctrine that emphasizes relations among humans. Both criteria make the form of social’s moving process simple, adaptive to nature and caring for opinion sharing and understanding among each other before action. This form of social quality’s moving process is composed of 4 steps; (1) awareness building, (2) motivation to change, (3) participation from every party concerned (4) self-reliance.

Keywords: social quality, form of social quality moving process, happiness, different social and cultural context

Procedia PDF Downloads 360
19478 Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM

Authors: Azher Jameel, Ghulam Ashraf Harmain

Abstract:

In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques.

Keywords: XFEM, EFGM, coupled FE-EFGM, level sets, large deformation

Procedia PDF Downloads 427
19477 Horizontal Bone Augmentation Using Two Membranes at Dehisced Implant Sites: A Randomized Clinical Study

Authors: Monika Bansal

Abstract:

Background: Placement of dental implant in narrow alveolar ridge is challenging to be treated. GBR procedure is currently most widely used to augment the deficient alveolar ridges and to treat the fenestration and dehiscence around dental implants. Thus, the objectives of the present study were to evaluate as well as compare the clinical performance of collagen membrane and titanium mesh for horizontal bone augmentation at dehisced implant sites. Methods and material: Total 12 single edentulous implant sites with buccal bone deficiency in 8 subjects were equally divided and treated simultaneously with either of the two membranes and DBBM(Bio-Oss) bone graft. Primary outcome measurements in terms of defect height and defect width were made using a calibrated plastic periodontal probe. Re-entry surgery was performed to remeasure the augmented site and to remove Ti-mesh at 6th month. Independent paired t-tests for the inter-group comparison and student-paired t-tests for the intra-group comparison were performed. The differences were considered to be significant at p ≤ 0.05. Results: Mean defect fill with respect to height and width was 3.50 ± 0.54 mm (87%) and 2.33 ± 0.51 mm (82%) for collagen membrane and 3.83 ± 0.75 mm (92%) and 2.50 ± 0.54 mm (88%) for Ti-mesh group respectively. Conclusions: Within the limitation of the study, it was concluded that mean defect height and width after 6 months were statistically significant within the group without significant difference between them, although defect resolution was better in Ti-mesh.

Keywords: collagen membrane, dehiscence, dental implant, horizontal bone, augmentation, ti-mesh

Procedia PDF Downloads 85
19476 A 2D Numerical Model of Viscous Flow-Cylinder Interaction

Authors: Bang-Fuh Chen, Chih-Chun Chu

Abstract:

The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.

Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration

Procedia PDF Downloads 488
19475 Social Media Advertising and Acceptability of Fast Moving Consumer Goods in Nigeria’s Manufacturing Industry

Authors: John Akinwumi Makinde

Abstract:

Nigerian manufacturing industry, particularly the fast moving consumer producing firms play vital roles in Nigerian economy. This sector’s product acceptability is given very little attention along with social media advertising that communicate product information to audience across the globe need to be documented. Procter and Gamble Plc operate in Nigeria with appreciable number of fast moving consumer goods that service Nigerian economy. Social media advertising disposition of the company and product acceptability of the company deserve some elucidations. This study therefore examined the impact of social media advertising on product acceptability of FMCG in Nigerian manufacturing industry, using Procter and Gamble Plc as case study. The study employed the case study type of descriptive survey research design. The population consisted of 235 customers of G&P Plc, which were selected through random sampling method. A total of 235 copies of questionnaires titled 'Social Media Advertising and Product Acceptability (SMA-PA) Questionnaire' was administered and retrieved. Data generated were analysed using frequency distribution and regression analysis at 0.05 level. It was found that social media advertising positively and significantly motivated customers to buy product of P&G Plc (r =.147**, N= 235, p(.000) < .01). Findings also showed that social media advertising has significant impact on product acceptability of FCMG in P&G Plc (F(2,61)=22.250; R2=.629; P(.000) < .05). The study concluded that social media advertising is a determinant factor of consumer decision to accept fast moving consumer goods in Nigerian manufacturing industry. It is recommended that with the growing market of FMCG, there is need to educate the market with the product unique features, standard and quality on social media. Finally, Fast Moving Consumer Goods firms should deploy excellent marketing mix on social media.

Keywords: advertising, fast moving consumer goods, manufacturing industry, product acceptability, social media

Procedia PDF Downloads 298
19474 Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap

Authors: Chaitanya H. Acharya, Pavan Kumar P., Gopalakrishna Narayana

Abstract:

In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car.

Keywords: DRS, CFD, drag, downforce, dynamics mesh motion

Procedia PDF Downloads 72
19473 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations

Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee

Abstract:

Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.

Keywords: game engine, rolling spheres method, substation protection, UE4, Unreal Engine 4

Procedia PDF Downloads 513
19472 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks

Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi

Abstract:

Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.

Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks

Procedia PDF Downloads 508
19471 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 544
19470 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality

Authors: Qian Yi Ooi

Abstract:

At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.

Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality

Procedia PDF Downloads 201
19469 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.

Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam

Procedia PDF Downloads 368
19468 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 164
19467 Investigation of Cascade Loop Heat Pipes

Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah

Abstract:

The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.

Keywords: biomaterial, cascade loop heat pipe, screen mesh, sintered Cu

Procedia PDF Downloads 242
19466 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 370
19465 Fast Transient Workflow for External Automotive Aerodynamic Simulations

Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley

Abstract:

In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.

Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS

Procedia PDF Downloads 95
19464 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 88
19463 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 109
19462 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking

Authors: Haowei Chen, Kaiqi Xiong

Abstract:

This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.

Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis

Procedia PDF Downloads 69
19461 Extraction of M. paradisiaca L. Inflorescences Using Compressed Propane

Authors: Michele C. Mesomo, Madeline de Souza Correa, Roberta L. Kruger, Luis R. S. Kanda, Marcos L. Corazza

Abstract:

Natural extracts of plants have been used for many years for different purposes and recently they have been screened for their potential use as alternative remedies and food preservatives. Inflorescences of M. paradisiaca L., also known as the heart of the banana, have great economic interest due to its fruit. All parts of the banana are used for many different purposes, including use in folk medicine. The use of extraction via supercritical technology has grown in recent years, though it is still necessary to obtain experimental information for the construction of industrial plants. This work reports the extraction of Musa paradisiaca L. using compressed propane as solvent. The effects of the supercritical extraction conditions, pressure and temperature on the yield were evaluated. The raw material, inflorescences banana, was dried at 313.15 K and milled. The particle size used for the packaging of the extraction cell was 12 mesh (23.5%), 16 mesh (23.5%), 32 mesh (34.5%), 48 mesh (18.5%). The extractions were performed in a laboratory scale unit at pressures of 3.0 MPa, 6.5 MPa and 10.0 MPa and at 308.15 K, 323.15 K and 338.15 K. The operating conditions tested achieved a maximum yield of 2.94 wt% for the CO2 extraction at 10.0 MPa and 338.15 K, higher pressure and temperature. The lower yield, 2.29 wt%, was obtained in the condition of lower pressure and higher temperature. Temperature presented significant and positive effect on the extraction yield with supercritical CO2, while pressure had no effect on the yield. The overall extraction curves showed typical behavior obtained for the supercritical extraction procedure and and reached a constant extraction rate of about 80 to 100 min. The largest amount of extract was obtained at the beginning of the process, within 10 to 60 min.

Keywords: banana, natural products, supercritical extraction, temperature

Procedia PDF Downloads 589
19460 Annular Axi-Symmetric Stagnation Flow of Electrically Conducting Fluid on a Moving Cylinder in the Presence of Axial Magnetic Field

Authors: Deva Kanta Phukan

Abstract:

An attempt is made where an electrically conducting fluid is injected from a fixed outer cylindrical casing onto an inner moving cylindrical rod. A magnetic field is applied parallel to the axis of the cylindrical rod. The basic governing set of partial differential equations for conservation of mass and momentum are reduced to a set of non-linear ordinary differential equation by introducing similarity transformation, which are integrated numerically. A perturbation solution for the case of large magnetic parameter is derived for constant Reynolds number.

Keywords: annular axi-symmetric stagnation flow, conducting fluid, magnetic field, moving cylinder

Procedia PDF Downloads 380
19459 Performance Evaluation of Cement Mortar with Crushed Stone Dust as Fine Aggregates

Authors: Pradeep Kumar

Abstract:

The present work is based on application of cement mortar with natural sand and discontinuous steel fiber through which bending behavior of skinny beam was evaluated. This research is to study the effects of combining reinforcing steel meshes (continuous steel reinforcement) with discontinuous fibers as reinforcement in skinny walled Portland cement based cement mortar with crushed stone dust as a fine aggregate. The term ‘skinny’ means thickness of the beams is less than 25 mm. The main idea behind this combination is to satisfy the ultimate strength limit state through the steel mesh reinforcement (as a main reinforcement) and to control the cracking under service loads through fiber (Recron 3s) reinforcement (as secondary reinforcement). The main object of this study is to carry out the bending behavior of mortar reinforced thin beam with only one layer of steel mesh (with various transfer wire spacing) and with a recron 3s (Reliance) fifers. The wide experimental program with bending tests is undertaken. The following variables are investigated: (a) the reference mesh size - 25.4 x 25.4 mm and 50.8 x 50.8 mm; (b) the transverse wire spacing - 25.4 mm, 50.8 mm, and no transverse wires; (c) the type of fibers – Reliance (Recron 3s, 6mm length); and (d) the fiber volume fraction – 0.1% and 0.25%. Some of the main conclusions are: (a) the use of recron 3s fibers leads to a little better overall performance than that with no fiber; (b) an increase in equivalent stress is observed when 0.1% RF,0.25% R Fibers are used; (c) when 25.4 x 50.8 size steel mesh is used, no noticeable change in behavior is observed in comparison to specimens without fibers; and (d) for no fibers 0.1% and o.1% RF the transverse wire spacing has some little effect on the equivalent stress for RF fibers, the transverse wire has no influence but the equivalent stress are increased.

Keywords: cement mortar, crushed stone dust, fibre, steel mesh

Procedia PDF Downloads 290
19458 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 395
19457 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach

Authors: Mortez Alijani, Anas Osman

Abstract:

Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.

Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point

Procedia PDF Downloads 146
19456 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

Authors: Raza Abdulla Saeed

Abstract:

In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a three-dimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.

Keywords: computational fluid dynamics, hydraulic francis turbine, numerical simulation, two-phase mixture cavitation model

Procedia PDF Downloads 534
19455 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection

Authors: Vinci Mojamdar, Govind S. Gupta

Abstract:

Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.

Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed

Procedia PDF Downloads 283
19454 Design and Realization of Double-Delay Line Canceller (DDLC) Using Fpga

Authors: A. E. El-Henawey, A. A. El-Kouny, M. M. Abd –El-Halim

Abstract:

Moving target indication (MTI) which is an anti-clutter technique that limits the display of clutter echoes. It uses the radar received information primarily to display moving targets only. The purpose of MTI is to discriminate moving targets from a background of clutter or slowly-moving chaff particles as shown in this paper. Processing system in these radars is so massive and complex; since it is supposed to perform a great amount of processing in very short time, in most radar applications the response of a single canceler is not acceptable since it does not have a wide notch in the stop-band. A double-delay canceler is an MTI delay-line canceler employing the two-delay-line configuration to improve the performance by widening the clutter-rejection notches, as compared with single-delay cancelers. This canceler is also called a double canceler, dual-delay canceler, or three-pulse canceler. In this paper, a double delay line canceler is chosen for study due to its simplicity in both concept and implementation. Discussing the implementation of a simple digital moving target indicator (DMTI) using FPGA which has distinct advantages compared to other application specific integrated circuit (ASIC) for the purposes of this work. The FPGA provides flexibility and stability which are important factors in the radar application.

Keywords: FPGA, MTI, double delay line canceler, Doppler Shift

Procedia PDF Downloads 608
19453 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes

Authors: Qiming Zhang, Youda Ye, Qinxue Jiang

Abstract:

Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.

Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes

Procedia PDF Downloads 212
19452 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method

Procedia PDF Downloads 181