Search results for: k-mer embedding
126 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 138125 Finite Eigenstrains in Nonlinear Elastic Solid Wedges
Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari
Abstract:
Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity
Procedia PDF Downloads 255124 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 361123 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork
Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting
Abstract:
This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark
Procedia PDF Downloads 268122 Secure Text Steganography for Microsoft Word Document
Authors: Khan Farhan Rafat, M. Junaid Hussain
Abstract:
Seamless modification of an entity for the purpose of hiding a message of significance inside its substance in a manner that the embedding remains oblivious to an observer is known as steganography. Together with today's pervasive registering frameworks, steganography has developed into a science that offers an assortment of strategies for stealth correspondence over the globe that must, however, need a critical appraisal from security breach standpoint. Microsoft Word is amongst the preferably used word processing software, which comes as a part of the Microsoft Office suite. With a user-friendly graphical interface, the richness of text editing, and formatting topographies, the documents produced through this software are also most suitable for stealth communication. This research aimed not only to epitomize the fundamental concepts of steganography but also to expound on the utilization of Microsoft Word document as a carrier for furtive message exchange. The exertion is to examine contemporary message hiding schemes from security aspect so as to present the explorative discoveries and suggest enhancements which may serve a wellspring of information to encourage such futuristic research endeavors.Keywords: hiding information in plain sight, stealth communication, oblivious information exchange, conceal, steganography
Procedia PDF Downloads 241121 Data Hiding by Vector Quantization in Color Image
Authors: Yung Gi Wu
Abstract:
With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.Keywords: data hiding, vector quantization, watermark, color image
Procedia PDF Downloads 364120 U-Turn on the Bridge to Freedom: An Interaction Process Analysis of Task and Relational Messages in Totalistic Organization Exit Conversations on Online Discussion Boards
Authors: Nancy Di Tunnariello, Jenna L. Currie-Mueller
Abstract:
Totalistic organizations include organizations that operate by playing a prominent role in the life of its members through embedding values and practices. The Church of Scientology (CoS) is an example of a religious totalistic organization and has recently garnered attention because of the questionable treatment of members by those with authority, particularly when members try to leave the Church. The purpose of this study was to analyze exit communication and evaluate the task and relational messages discussed on online discussion boards for individuals with a previous or current connection to the totalistic CoS. Using organizational exit phases and interaction process analysis (IPA), researchers coded 30 boards consisting of 14,179 thought units from the Exscn.net website. Findings report all stages of exit were present, and post-exit surfaced most often. Posts indicated more tasks than relational messages, where individuals mainly provided orientation/information. After a discussion of the study’s contributions, limitations and directions for future research are explained.Keywords: Bales' IPA, organizational exit, relational messages, scientology, task messages, totalistic organizations
Procedia PDF Downloads 129119 Histopathological Features of Infections Caused by Fusarium equiseti (Mart.) Sacc. in Onion Plants from Kebbi State, Northern Nigeria
Authors: Wadzani Dauda Palnam, Alao S. Emmanuel Laykay, Afiniki Bawa Zarafi, Olufunmilola Alabi, Dora N. Iortsuun
Abstract:
Onion production is affected by several diseases including fusariosis. Study was conducted to investigate the histopathological features of different onion tissues infected with Fusarium equiseti by inoculation with soil drench, root dip and mycelia paste methods. This was carried out by fixation, dehydration, clearing, wax embedding, sectioning, staining and mounting of leaf and root sections for microscopical examination at 400x. Once infection occurred in the roots, the pathogen moved through the vascular system to colonize the whole plant. At first, it grew in the intercellular spaces of the root cortex but soon invaded the cells, followed by colonization of the cells by its hyphae and microconidia. At later stages of infection, the cortex tissue became completely disorganized and decomposed as the pathogen advance to the shoot system via the vessel elements; this may be responsible for the early wilting symptom of infected plants arising from the severe water stress due to blockage of the xylem tissues.Keywords: onion, histopathology, infection, fusaria, inoculation
Procedia PDF Downloads 278118 Hypercomplex Dynamics and Turbulent Flows in Sobolev and Besov Functional Spaces
Authors: Romulo Damasclin Chaves dos Santos, Jorge Henrique de Oliveira Sales
Abstract:
This paper presents a rigorous study of advanced functional spaces, with a focus on Sobolev and Besov spaces, to investigate key aspects of fluid dynamics, including the regularity of solutions to the Navier-Stokes equations, hypercomplex bifurcations, and turbulence. We offer a comprehensive analysis of Sobolev embedding theorems in fractional spaces and apply bifurcation theory within quaternionic dynamical systems to better understand the complex behaviors in fluid systems. Additionally, the research delves into energy dissipation mechanisms in turbulent flows through the framework of Besov spaces. Key mathematical tools, such as interpolation theory, Littlewood-Paley decomposition, and energy cascade models, are integrated to develop a robust theoretical approach to these problems. By addressing challenges related to the existence and smoothness of solutions, this work contributes to the ongoing exploration of the open Navier-Stokes problem, providing new insights into the intricate relationship between fluid dynamics and functional spaces.Keywords: navier-stokes equations, hypercomplex bifurcations, turbulence, sobolev and besov space
Procedia PDF Downloads 14117 Mindfulness Meditation in Higher Education
Authors: Steve Haberlin
Abstract:
United States college students are experiencing record-high stress and anxiety rates, and due to technological advances, there are more distractions in the classroom. With these challenges comes the need to explore additional, non-traditional pedagogical strategies that can help students de-stress, become centered, and feel more deeply connected to content. In addition, embedding contemplative practices, such as mindfulness meditation, in the higher education classroom could assist faculty in presenting a more holistic education that encourages students to develop self-awareness, emotional intelligence, compassion, interconnectedness, and other “non-academic” qualities. Brief meditation may help students de-stress, focus, and connect. A facilitation guide could also help faculty implement classroom meditation practices; however, additional research is needed to determine how to best train faculty, what meditation techniques work best with students, and how to handle resistance. In this paper, a two-phase study is presented that involves a mindfulness meditation intervention with 180 undergraduate students at a private college in the southeastern United States. Data were collected through qualitative surveys and journaling and analyzed for themes. Findings included a majority of students reporting improved calm, reduced stress, and increased focus and ability to transition to classroom instruction.Keywords: college students, higher education, mindfulness meditation, stress
Procedia PDF Downloads 64116 Risk Screening in Digital Insurance Distribution: Evidence and Explanations
Authors: Finbarr Murphy, Wei Xu, Xian Xu
Abstract:
The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening
Procedia PDF Downloads 73115 Hate Speech Detection Using Machine Learning: A Survey
Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile
Abstract:
Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection
Procedia PDF Downloads 177114 A Real Time Ultra-Wideband Location System for Smart Healthcare
Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang
Abstract:
Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare
Procedia PDF Downloads 140113 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility
Authors: Fu Jinyu, Lin Jinguan
Abstract:
This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate
Procedia PDF Downloads 155112 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 127111 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming
Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi
Abstract:
This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.Keywords: soft robotics, soft actuator, frog robot, 3D printing
Procedia PDF Downloads 101110 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts
Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel
Abstract:
We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.Keywords: deep-learning approach, object-classes, semantic classification, Arabic
Procedia PDF Downloads 88109 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis
Authors: R. Rama Kishore, Sunesh
Abstract:
This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.Keywords: digital watermarking, discreate cosine transform, chaotic grid map, entropy
Procedia PDF Downloads 252108 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 66107 Embedding Sustainable Design Practices in Architecture Pedagogy: A Study on Ecological Conscious Building Design Techniques
Authors: Pooya Lotfabadi
Abstract:
As the global community struggles with pressing environmental challenges, the field of architecture finds itself at the forefront of sustainability issues. This study evaluates the effectiveness of "ecological conscious building design" courses in architecture education, promoting ecological awareness among future architects. Using the analytic hierarchy process (AHP) as a framework, the study assesses the course’s influence on students' knowledge, skills, and attitudes toward sustainable practices. Through analyzing student feedback, performance assessments, and course outcomes, the research highlights the advantages and limitations of integrating ecological building design into the curriculum. Furthermore, the alignment between the course content and the leadership in energy and environmental design (LEED) certification criteria is explored, evaluating its adequacy in preparing students for environmentally responsible architectural practices. This research offers critical insights for academia and the industry, offering guidance for refining pedagogical approaches, improving curriculum design, and fostering young architects committed to environmentally conscious practices. Ultimately, this study seeks to propel the field of architecture toward a more sustainable and ecologically responsible future.Keywords: AHP, architectural education, ecological design, sustainability
Procedia PDF Downloads 30106 Video Materials as a Persuasive Strategy in Tourism Discourse
Authors: Ganna Zakharova
Abstract:
The persuasive influence of tourism promotional materials is very much experienced nowadays. In order to attract the attention of viewers, marketers choose various techniques in their digital texts. Video is an essential element for attraction and seduction; it is a trigger element for tourists. This solution for web marketing engages and convinces potential tourists to book a tourism product. Embedding video materials into a website provides useful information, create different feelings in viewers, and help them finalize their decisions. The present article discusses video solutions for health tourism websites used to allure potential tourists. The paper reviews the influential elements of persuasive tourism marketing videos. The article highlights how these components as persuasive strategies of tourism promotional materials can influence the decisions of tourism websites’ users. The result section provides the real examples of the deployment of the mentioned technique to convince the audience by the website of 'Karpaty' resort (Ukraine). This technique is worth attention as it plays an important role in the promotion of tourism services. The data collection of this study will provide updated information in relation to the rhetoric of tourism.Keywords: tourism discourse, persuasive video, influential videos in marketing, persuasive discourse, tourism promotion
Procedia PDF Downloads 118105 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 122104 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage
Authors: Mohammed Omar
Abstract:
Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).Keywords: PVP, SPR, γ-radiations, XRD
Procedia PDF Downloads 104103 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt
Authors: Walid El Kamash
Abstract:
Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil
Procedia PDF Downloads 378102 Making Political Leaders Responsible Leaders in an Effort to Reduce Corruption
Authors: Maria Krambia-Kapardis, Andreas Kapardis
Abstract:
The relevant literature has been inundated with arguments for ethics, moral values, honesty, resilience, trust in leadership as well as responsible leadership. In many countries around the globe, and as shown by some recent reports, many political leaders are not role models and do not show best practices by being ethical, responsible, compassionate, and resilient. Journalists, whistleblowers, WikiLeaks, Al Jazeera, and the International Consortium of Investigative Journalists (ICIJ) have been brought out from the shadow of political leaders who lack the virtues/attributes outlined above by the UN Global Compact. A number of political leaders who lack ethical and responsible leadership skills will continue to find loopholes to enrich themselves and their close friends and relatives. Some researchers use the Millon Inventory of Diagnostic; however, this test, while it provides helpful and useful insights into the personality of a person who leads or inspire his/her people but does not show if that person is ethical, motivating, and empowers his people with trust and honesty. Thus, it is recommended that political leaders ought to undergo training that encompasses Aristotelian Ethics by embedding the appropriate values and behaviours in their strategies, policies, and decisions, enhancing the change factors that will help in the implementation of a more sustainable development model. Finally, there is a need to develop a pedagogy and a curriculum which enables the development of responsible political leaders.Keywords: political leaders, corruption, anti-corruption, political corruption
Procedia PDF Downloads 74101 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing
Authors: Daniel Phifer, Anna Prokhodtseva
Abstract:
DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell
Procedia PDF Downloads 207100 An Improved Image Steganography Technique Based on Least Significant Bit Insertion
Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo
Abstract:
In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.Keywords: steganography, image steganography, least significant bits, bit map image
Procedia PDF Downloads 26699 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition
Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao
Abstract:
Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity
Procedia PDF Downloads 7898 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds
Authors: Shaker Alsharif, Xavier Banquy
Abstract:
Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.Keywords: controlled release, hydrogel, liposomes, active compounds
Procedia PDF Downloads 44797 Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance
Authors: Seongryong Kang, Woonjin Kim, Sungjoo Lee
Abstract:
Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer.Keywords: diversity, intensity, international technology acquisition, performance, technology transfer
Procedia PDF Downloads 361