Search results for: improvement of model accuracy and reliability
23505 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 46423504 Defining Methodology for Multi Model Software Process Improvement Framework
Authors: Aedah Abd Rahman
Abstract:
Software organisations may implement single or multiple frameworks in order to remain competitive. There are wide selection of generic Software Process Improvement (SPI) frameworks, best practices and standards implemented with different focuses and goals. Issues and difficulties emerge in the SPI practices from the context of software development and IT Service Management (ITSM). This research looks into the integration of multiple frameworks from the perspective of software development and ITSM. The research question of this study is how to define steps of methodology to solve the multi model software process improvement problem. The objective of this study is to define the research approach and methodologies to produce a more integrated and efficient Multi Model Process Improvement (MMPI) solution. A multi-step methodology is used which contains the case study, framework mapping and Delphi study. The research outcome has proven the usefulness and appropriateness of the proposed framework in SPI and quality practice in Malaysian software industries. This mixed method research approach is used to tackle problems from every angle in the context of software development and services. This methodology is used to facilitate the implementation and management of multi model environment of SPI frameworks in multiple domains.Keywords: Delphi study, methodology, multi model software process improvement, service management
Procedia PDF Downloads 26023503 Asynchronous Low Duty Cycle Media Access Control Protocol for Body Area Wireless Sensor Networks
Authors: Yasin Ghasemi-Zadeh, Yousef Kavian
Abstract:
Wireless body area networks (WBANs) technology has achieved lots of popularity over the last decade with a wide range of medical applications. This paper presents an asynchronous media access control (MAC) protocol based on B-MAC protocol by giving an application for medical issues. In WBAN applications, there are some serious problems such as energy, latency, link reliability (quality of wireless link) and throughput which are mainly due to size of sensor networks and human body specifications. To overcome these problems and improving link reliability, we concentrated on MAC layer that supports mobility models for medical applications. In the presented protocol, preamble frames are divided into some sub-frames considering the threshold level. Actually, the main reason for creating shorter preambles is the link reliability where due to some reasons such as water, the body signals are affected on some frequency bands and causes fading and shadowing on signals, therefore by increasing the link reliability, these effects are reduced. In case of mobility model, we use MoBAN model and modify that for some more areas. The presented asynchronous MAC protocol is modeled by OMNeT++ simulator. The results demonstrate increasing the link reliability comparing to B-MAC protocol where the packet reception ratio (PRR) is 92% also covers more mobility areas than MoBAN protocol.Keywords: wireless body area networks (WBANs), MAC protocol, link reliability, mobility, biomedical
Procedia PDF Downloads 36923502 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 17423501 Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors
Authors: Sally Salah El Menshawy, Ghada M. Ahmed GabAllah, Doaa Khedr M. Khedr
Abstract:
Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions.Keywords: diffusion tensor imaging, MRI, salivary gland, tumors
Procedia PDF Downloads 10923500 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves
Authors: Dmytro Zubov, Francesco Volponi
Abstract:
In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.Keywords: heat wave, D-wave, forecast, Ising model, quantum computing
Procedia PDF Downloads 49723499 Reliability-Based Design of an Earth Slope Taking into Account Unsaturated Soil Properties
Authors: A. T. Siacara, A. T. Beck, M. M. Futai
Abstract:
This paper shows how accurately and efficiently reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver. An earth slope is used as the study object. The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface. The deterministic software package Seep/W and Slope/W is coupled with the StRAnD reliability software. Reliability indexes of critical probabilistic surfaces are evaluated by the first-order reliability methods (FORM). By means of sensitivity analysis, the effective cohesion (c') is found to be the most relevant uncertain geotechnical parameter for slope equilibrium. The slope was tested using different geometries, taking into account unsaturated soil properties. Finally, a critical slip surface, identified in terms of minimum factor of safety, is shown here not to be the critical surface in terms of reliability index.Keywords: slope, unsaturated, reliability, safety, seepage
Procedia PDF Downloads 14623498 Reliability of Movement Assessment Battery for Children-2 Age Band 3 Using Multiple Testers
Authors: Jernice S. Y. Tan
Abstract:
Introduction: Reliability within and between testers is vital to ensure the accuracy of any motor assessment instrument. However, reliability checks of the Movement Assessment Battery for Children-2 (MABC-2) age band 3 using multiple testers assigned to different MABC-2 tasks for the same group of participants are uncommon. Multiple testers were not stated as a choice in the MABC-2 manual. Therefore, the purpose of this study was to determine the inter- and intra-tester reliability for using multiple testers to administer the test protocols of MABC-2 age band 3. Methods: Thirty volunteered adolescents (n = 30; 15 males, 15 females; age range: 13 – 16 years) performed the eight tasks in a randomised sequence at three different test stations for the MABC-2 task components (Manual Dexterity, Aiming and Catching, Balance). Ethics approval and parental consent were obtained. The participants were videotaped while performing the test protocols of MABC-2 age band 3. Five testers were involved in the data collection process. They were Sports Science graduating students doing their final year project and were supervised by experienced motor assessor. Inter- and intra-tester reliability checks using intra-class coefficient (ICC) were carried out using the videotaped data. Results: The inter-tester reliability between the five testers for the eight tasks ranged from rᵢcc = 0.705 to rᵢcc = 0.995. This suggests that the average agreement between them was considered good to excellent. With the exception of one tester who had rᵢcc = 0.687 for one of the eight tasks (i.e. zip-zap hopping), the intra-tester reliability within each tester ranged from rᵢcc = 0.728 to rᵢcc = 1.000, and this also suggested good to excellent consistency within testers. Discussion: The use of multiple testers with good intra-tester reliability for different test stations is feasible. This method allows several participants to be assessed concurrently at different test stations and saves overall data collection time. Therefore, it is recommended that the administering of MABC-2 with multiple testers should be extended to other age bands ensuring the feasibility of such method for other age bands.Keywords: adolescents, MABC, motor assessment, motor skills, reliability
Procedia PDF Downloads 32223497 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data
Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer
Abstract:
Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction
Procedia PDF Downloads 53023496 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 35523495 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies
Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong
Abstract:
To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation
Procedia PDF Downloads 13823494 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling
Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao
Abstract:
In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis
Procedia PDF Downloads 14623493 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 26123492 Internal Audit Innovation Affects to the Firm Performance Effectiveness
Authors: Prateep Wajeetongratana
Abstract:
The objective of this research is to examine the effects of internal audit innovation on firm performance effectiveness influences of financial report reliability, organizational process improvement, and risk management effectiveness. This paper drew upon the survey data collected from 400 employees survey conducted at Nonthaburi province, Thailand. The statistics utilized in this paper included percentage, mean, standard deviation, and regression analysis. The findings revealed that the majority of samples were between 31-40 years old, married, held an undergraduate degree, and had an average income between 10,000-15,000 baht. And also the results show that auditing integration has only influence on financial report reliability. Moreover, corporate risk evaluation has effect on firm performance by risk management effectiveness and control self-assessment has effect influence on firm performance by organizational process improvement and risk management effectiveness as well.Keywords: corporate risk evaluation, firm performance effectiveness, internal audit innovation, marketing management
Procedia PDF Downloads 37723491 Reliability Verification of the Performance Evaluation of Multiphase Pump
Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi
Abstract:
The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification
Procedia PDF Downloads 43423490 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time
Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar
Abstract:
The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors
Procedia PDF Downloads 7423489 A New Reliability Allocation Method Based on Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming
Procedia PDF Downloads 34123488 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 6123487 Reliability Analysis of Heat Exchanger Cycle Using Non-Parametric Method
Authors: Apurv Kulkarni, Shreyas Badave, B. Rajiv
Abstract:
Non-parametric reliability technique is useful for assessment of reliability of systems for which failure rates are not available. This is useful when detection of malfunctioning of any component is the key purpose during ongoing operation of the system. The main purpose of the Heat Exchanger Cycle discussed in this paper is to provide hot water at a constant temperature for longer periods of time. In such a cycle, certain components play a crucial role and this paper presents an effective way to predict the malfunctioning of the components by determination of system reliability. The method discussed in the paper is feasible and this is clarified with the help of various test cases.Keywords: heat exchanger cycle, k-statistics, PID controller, system reliability
Procedia PDF Downloads 39023486 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 45223485 Continuous Improvement in Emerging Economies: Insights from a Multi-Case Analysis
Authors: Luis A. Paipa-Galeano, Yavar Jarrah-Nezhad, César A. Bernal-Torres
Abstract:
This paper presents a case study of four companies in an emerging economy to identify the key success factors and barriers to sustaining continuous improvement practices. The study analyzes the empirical evidence and compares it to the literature review to provide insights for companies looking to increase their maturity level in this area. The five success factors identified are the availability of resources, commitment and support from management, participation of employees in identifying tasks to improve, clear and realistic objectives for continuous improvement, and the existence of a leader or responsible for continuous improvement. The major barriers to success are a lack of alignment between the organization’s strategic objectives and continuous improvement objectives, a lack of motivation in the team, and resistance to change. The paper concludes with recommendations for companies to reduce the risk of improvement failure and increase their maturity level in continuous improvement.Keywords: emerging economies, Kaizen, continuous improvement sustainability, maturity model
Procedia PDF Downloads 7223484 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction
Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto
Abstract:
Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data
Procedia PDF Downloads 10523483 The Effect of Al Andalus Improvement Model on the Teachers Performance and Their High School Students' Skills Acquiring
Authors: Sobhy Fathy A. Hashesh
Abstract:
The study was carried out in the High School Classes of Andalus Private Schools, boys section, using control and experimental groups that were randomly assigned. The study investigated the effect of Al-Andalus Improvement Model (AIM) on the development of students’ skills acquiring. The society of the study composed of Al-Andalus Private Schools, high school students, boys Section (N=700), while the sample of the study composed of four randomly assigned groups two groups of teachers (N=16) and two groups of students (N=42) with one experimental group and one control group for teachers and their students respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences in teachers’ performances and students' skills acquiring for the favor of the experimental groups and there was a strong correlation between the teachers performances and the students skills acquiring. The study recommended the implementation of the AIM model for the sake of teachers performances and students’ learning outcomes.Keywords: AIM, improvement model, Classera, Al-Andalus Improvement Model.
Procedia PDF Downloads 16523482 Rasch Analysis in the Development of 'Kohesif-Ques': An Instrument to Measure Social Cohesion
Authors: Paramita Sekar Ayu, Sunjaya Deni Kurniadi, Yamazaki Chiho, Hilfi Lukman, Koyama Hiroshi
Abstract:
Social cohesion, or closeness among members of society, is an important determinant of population health. A cohesive society is a crucial societal condition for a positive life evaluation and subjective wellbeing, and people living in a cohesive society are happier and more satisfied with life and achieve better health status. The objective of this study was to compose and validate a questionnaire for measuring social cohesion with Rasch analysis. We develop a set of 13 questions to measure 4 dimensions of social cohesion. Random samples of 166 Bandung citizens’ were selected to answer the questionnaire. To evaluate the questionnaire’s validity and reliability, Rasch analysis (a psychometric model for analyzing categorical data on questionnaire responses) was carried out using Winsteps version 3.75.0. Rasch analysis was performed on the response given to 13 items included in the questionnaire. The reliability coefficient, Cronbach’s alpha was 0.70, model RMSE 0.08, SD 0.54, separation 7.14, and reliability of 0.98. ‘Kohesif-Ques’ is a useful instrument to assess social cohesion.Keywords: rasch analysis, rasch model, social cohesion, quesionnaire
Procedia PDF Downloads 17723481 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 10123480 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 58223479 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation
Authors: Sopheak Sorn, Kwok Yip Szeto
Abstract:
Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio
Procedia PDF Downloads 41923478 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System
Authors: Hao Wang, Shuguo Pan
Abstract:
The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm
Procedia PDF Downloads 9723477 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 9023476 Improved Accuracy of Ratio Multiple Valuation
Authors: Julianto Agung Saputro, Jogiyanto Hartono
Abstract:
Multiple valuation is widely used by investors and practitioners but its accuracy is questionable. Multiple valuation inaccuracies are due to the unreliability of information used in valuation, inaccuracies comparison group selection, and use of individual multiple values. This study investigated the accuracy of valuation to examine factors that can increase the accuracy of the valuation of multiple ratios, that are discretionary accruals, the comparison group, and the composite of multiple valuation. These results indicate that multiple value adjustment method with discretionary accruals provides better accuracy, the industry comparator group method combined with the size and growth of companies also provide better accuracy. Composite of individual multiple valuation gives the best accuracy. If all of these factors combined, the accuracy of valuation of multiple ratios will give the best results.Keywords: multiple, valuation, composite, accuracy
Procedia PDF Downloads 282