Search results for: healthcare networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4335

Search results for: healthcare networks

4245 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 383
4244 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 26
4243 Effectiveness of the Community Health Assist Scheme in Reducing Market Failure in Singapore’s Healthcare Sector

Authors: Matthew Scott Lau

Abstract:

This study addresses the research question: How effective has the Community Health Assist Scheme (CHAS) been in reducing market failure in Singapore’s healthcare sector? The CHAS policy, introduced in 2012 in Singapore, aims to improve accessibility and affordability of healthcare by offering subsidies to low and middle-income groups and elderly individuals for general practice consultations and healthcare. The investigation was undertaken by acquiring and analysing primary and secondary research data from 3 main sources, including handwritten survey responses of 334 individuals who were valid CHAS subsidy recipients (CHAS cardholders) from 5 different locations in Singapore, interview responses from two established general practitioner doctors with working knowledge of the scheme, and information from literature available online. Survey responses were analysed to determine how CHAS has affected the affordability and consumption of healthcare, and other benefits or drawbacks for CHAS users. The interview responses were used to explain the benefits of healthcare consumption and provide different perspectives on the impacts of CHAS on the various parties involved. Online sources provided useful information on changes in healthcare consumerism and Singapore’s government policies. The study revealed that CHAS has been largely effective in reducing market failure as the subsidies granted to consumers have improved the consumption of healthcare. This has allowed for the external benefits of healthcare consumption to be realized, thus reducing market failure. However, the study also revealed that CHAS cannot be fully effective in reducing market failure as the scope of CHAS prevents healthcare consumption from fully reaching the socially optimal level. Hence, the study concluded that CHAS has been effective to a large extent in reducing market failure in Singapore’s healthcare sector, albeit with some benefits to third parties yet to be realised. There are certain elements of the investigation, which may limit the validity of the conclusion, such as the means used to determine the socially optimal level of healthcare consumption, and the survey sample size.

Keywords: healthcare consumption, health economics, market failure, subsidies

Procedia PDF Downloads 159
4242 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
4241 Nuclear Near Misses and Their Learning for Healthcare

Authors: Nick Woodier, Iain Moppett

Abstract:

Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.

Keywords: culture, definitions, near miss, nuclear safety, patient safety

Procedia PDF Downloads 104
4240 Learning from Long COVID: How Healthcare Needs to Change for Contested Illnesses

Authors: David Tennison

Abstract:

In the wake of the Covid-19 pandemic, a new chronic illness emerged onto the global stage: Long Covid. Long Covid presents with several symptoms commonly seen in other poorly-understood illnesses, such as fibromyalgia (FM) and myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS). However, while Long Covid has swiftly become a recognised illness, FM and ME/CFS are still seen as contested, which impacts patient care and healthcare experiences. This study aims to examine what the differences are between Long Covid and FM; and if the Long Covid case can provide guidance for how to address the healthcare challenge of contested illnesses. To address this question, this study performed comprehensive research into the history of FM; our current biomedical understanding of it; and available healthcare interventions (within the context of the UK NHS). Analysis was undertaken of the stigma and stereotypes around FM, and a comparison made between FM and the emerging Long Covid literature, along with the healthcare response to Long Covid. This study finds that healthcare for chronic contested illnesses in the UK is vastly insufficient - in terms of pharmaceutical and holistic interventions, and the provision of secondary care options. Interestingly, for Long Covid, many of the treatment suggestions are pulled directly from those used for contested illnesses. The key difference is in terms of funding and momentum – Long Covid has generated exponentially more interest and research in a short time than there has been in the last few decades of contested illness research. This stands to help people with FM and ME/CFS – for example, research has recently been funded into “brain fog”, a previously elusive and misunderstood symptom. FM is culturally regarded as a “women’s disease” and FM stigma stems from notions of “hysteria”. A key finding is that the idea of FM affecting women disproportionally is not reflected in modern population studies. Emerging data on Long Covid also suggests a slight leaning towards more female patients, however it is less feminised, potentially due to it emerging in the global historical moment of the pandemic. Another key difference is that FM is rated as an extremely low-prestige illness by healthcare professionals, while it was in large part due to the advocacy of affected healthcare professionals that Long Covid was so quickly recognised by science and medicine. In conclusion, Long Covid (and the risk of future pandemics and post-viral illnesses) highlight a crucial need for implementing new, and reinforcing existing, care networks for chronic illnesses. The difference in how contested illnesses like FM, and new ones like Long Covid are treated have a lot to do with the historical moment in which they emerge – but cultural stereotypes, from within and without medicine, need updating. Particularly as they contribute to disease stigma that causes genuine harm to patients. However, widespread understanding and acceptance of Long Covid could help fight contested illness stigma, and the attention, funding and research into Long Covid may actually help raise the profile of contested illnesses and uncover answers about their symptomatology.

Keywords: long COVID, fibromyalgia, myalgic encephalomyelitis, chronic fatigue syndrome, NHS, healthcare, contested illnesses, chronic illnesses, COVID-19 pandemic

Procedia PDF Downloads 68
4239 User Perceptions Deviation from the Producers’ Intended Meaning of a Healthcare Innovation

Authors: Helle Nissen

Abstract:

Physical objects surrounding people in healthcare environments are carriers of institutional logics materialized into the objects by its producers. However, institutional logics research lacks to inform us how logics become materialized and are perceived by producers vs. users of an object. The study is based on a 3-year longitudinal case study of a Danish Public Private Innovation project aiming to co-create an innovative healthcare bed commercialized to public psychiatric hospitals. The producers are a private metal firm and industrial designers from two Danish regions. The findings demonstrate that the metal firm and designers, as producers, negotiate about materializing different logics into the bed throughout the innovation process. An aesthetic logic is prioritized most, and the producers encode it with the intention to develop a bed that looks homely and less hospital-like compared to previous and existing healthcare beds. After the bed is put into use, the aesthetic logic is decoded by the users. Their perception of it differs significantly from the producers’ intended meaning, as the healthcare bed is perceived as sterile. The study has theoretical implications: It demonstrates how logics become materialized ‘here and now’, and it reveals logics as less governed by stable and clear meanings but rather as subject to changeable perceptions.

Keywords: co-creation, healthcare innovation, commercialization, institutional logics

Procedia PDF Downloads 86
4238 Exploring Leadership Adaptability in the Private Healthcare Organizations in the UK in Times of Crises

Authors: Sade Ogundipe

Abstract:

The private healthcare sector in the United Kingdom has experienced unprecedented challenges during times of crisis, necessitating effective leadership adaptability. This qualitative study delves into the dynamic landscape of leadership within the sector, particularly during crises, employing the lenses of complexity theory and institutional theory to unravel the intricate mechanisms at play. Through in-depth interviews with 25 various levels of leaders in the UK private healthcare sector, this research explores how leaders in UK private healthcare organizations navigate complex and often chaotic environments, shedding light on their adaptive strategies and decision-making processes during crises. Complexity theory is used to analyze the complicated, volatile nature of healthcare crises, emphasizing the need for adaptive leadership in such contexts. Institutional theory, on the other hand, provides insights into how external and internal institutional pressures influence leadership behavior. Findings from this study highlight the multifaceted nature of leadership adaptability, emphasizing the significance of leaders' abilities to embrace uncertainty, engage in sensemaking, and leverage the institutional environment to enact meaningful changes. Furthermore, this research sheds light on the challenges and opportunities that leaders face when adapting to crises within the UK private healthcare sector. The study's insights contribute to the growing body of literature on leadership in healthcare, offering practical implications for leaders, policymakers, and stakeholders within the UK private healthcare sector. By employing the dual perspectives of complexity theory and institutional theory, this research provides a holistic understanding of leadership adaptability in the face of crises, offering valuable guidance for enhancing the resilience and effectiveness of healthcare leadership within this vital sector.

Keywords: leadership, adaptability, decision-making, complexity, complexity theory, institutional theory, organizational complexity, complex adaptive system (CAS), crises, healthcare

Procedia PDF Downloads 50
4237 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review

Authors: Tigabu Dagne Akal

Abstract:

Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.

Keywords: EHR, EMR, Big data, Big data analytics, resource-based view

Procedia PDF Downloads 131
4236 Impact of Flexibility on Patient Satisfaction and Behavioral Intention: A Critical Reassessment and Model Development

Authors: Pradeep Kumar, Shibashish Chakraborty, Sasadhar Bera

Abstract:

In the anticipation of demand fluctuations, services cannot be inventoried and hence it creates a difficult problem in marketing of services. The inability to meet customers (patients) requirements in healthcare context has more serious consequences than other service sectors. In order to meet patient requirements in the current uncertain environment, healthcare organizations are seeking ways for improved service delivery. Flexibility provides a mechanism for reducing variability in service encounters and improved performance. Flexibility is defined as the ability of the organization to cope with changing circumstances or instability caused by the environment. Patient satisfaction is an important performance outcome of healthcare organizations. However, the paucity of information exists in healthcare delivery context to examine the impact of flexibility on patient satisfaction and behavioral intention. The present study is an attempt to develop a conceptual foundation for investigating overall impact of flexibility on patient satisfaction and behavioral intention. Several dimensions of flexibility in healthcare context are examined and proposed to have a significant impact on patient satisfaction and intention. Furthermore, the study involves a critical examination of determinants of patient satisfaction and development of a comprehensive view the relationship between flexibility, patient satisfaction and behavioral intention. Finally, theoretical contributions and implications for healthcare professionals are suggested from flexibility perspective.

Keywords: healthcare, flexibility, patient satisfaction, behavioral intention

Procedia PDF Downloads 370
4235 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
4234 Use of Social Networks and Mobile Technologies in Education

Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský

Abstract:

Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.

Keywords: social networks, motivation, e-learning, mobile technology

Procedia PDF Downloads 313
4233 The Nature and the Structure of Scientific and Innovative Collaboration Networks

Authors: Afshin Moazami, Andrea Schiffauerova

Abstract:

The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.

Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States

Procedia PDF Downloads 200
4232 The Impact of Different Social Networks on the Development of Digital Entrepreneurship

Authors: Mohammad Mehdizadeh, Sara Miri

Abstract:

In today's world, competition is one of the essential components of different markets. Therefore, in addition to economic factors, social factors can also affect the development and prosperity of businesses. In this regard, social networks are of particular importance and play a critical role in the flourishing and development of Internet businesses. The purpose of this article is to investigate the effect of different social networks in promoting digital entrepreneurship. The research method is the descriptive survey. The results show that social networks have a positive and significant impact on digital entrepreneurship development. Among the social networks studied, Instagram and Facebook have the most positive effect on digital entrepreneurship.

Keywords: entrepreneurship, Facebook, Instagram, social media

Procedia PDF Downloads 349
4231 Contribution of Supply Chain Management Practices for Enhancing Healthcare Service Quality: A Quantitative Analysis in Delhi’s Healthcare Sector

Authors: Chitrangi Gupta, Arvind Bhardwaj

Abstract:

This study seeks to investigate and quantify the influence of various dimensions of supply chain management (namely, supplier relationships, compatibility, specifications and standards, delivery processes, and after-sales service) on distinct dimensions of healthcare service quality (specifically, responsiveness, trustworthiness, and security) within the operational framework of XYZ Superspeciality Hospital, situated in Delhi. The name of the Hospital is not being mentioned here because of the privacy policy of the hospital. The primary objective of this research is to elucidate the impact of supply chain management practices on the overall quality of healthcare services offered within hospital settings. Employing a quantitative research design, this study utilizes a hypothesis-testing approach to systematically discern the relationship between supply chain management dimensions and the quality of health services. The findings of this study underscore the significant influence exerted by supply chain management dimensions, specifically supplier relationships, specifications and standards, delivery processes, and after-sales service, on the enhancement of healthcare service quality. Moreover, the study's results reveal that demographic factors such as gender, qualifications, age, and experience do not yield discernible disparities in the relationship between supply chain management and healthcare service quality.

Keywords: supply chain management, healthcare, hospital operations, service delivery

Procedia PDF Downloads 67
4230 DeClEx-Processing Pipeline for Tumor Classification

Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba

Abstract:

Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.

Keywords: machine learning, healthcare, classification, explainability

Procedia PDF Downloads 55
4229 Knowledge Engineering Based Smart Healthcare Solution

Authors: Rhaed Khiati, Muhammad Hanif

Abstract:

In the past decade, smart healthcare systems have been on an ascendant drift, especially with the evolution of hospitals and their increasing reliance on bioinformatics and software specializing in healthcare. Doctors have become reliant on technology more than ever, something that in the past would have been looked down upon, as technology has become imperative in reducing overall costs and improving the quality of patient care. With patient-doctor interactions becoming more necessary and more complicated than ever, systems must be developed while taking into account costs, patient comfort, and patient data, among other things. In this work, we proposed a smart hospital bed, which mixes the complexity and big data usage of traditional healthcare systems with the comfort found in soft beds while taking certain concerns like data confidentiality, security, and maintaining SLA agreements, etc. into account. This research work potentially provides users, namely patients and doctors, with a seamless interaction with to their respective nurses, as well as faster access to up-to-date personal data, including prescriptions and severity of the condition in contrast to the previous research in the area where there is lack of consideration of such provisions.

Keywords: big data, smart healthcare, distributed systems, bioinformatics

Procedia PDF Downloads 198
4228 The Impact of Malicious Attacks on the Performance of Routing Protocols in Mobile Ad-Hoc Networks

Authors: Habib Gorine, Rabia Saleh

Abstract:

Mobile Ad-Hoc Networks are the special type of wireless networks which share common security requirements with other networks such as confidentiality, integrity, authentication, and availability, which need to be addressed in order to secure data transfer through the network. Their routing protocols are vulnerable to various malicious attacks which could have a devastating consequence on data security. In this paper, three types of attacks such as selfish, gray hole, and black hole attacks have been applied to the two most important routing protocols in MANET named dynamic source routing and ad-hoc on demand distance vector in order to analyse and compare the impact of these attacks on the Network performance in terms of throughput, average delay, packet loss, and consumption of energy using NS2 simulator.

Keywords: MANET, wireless networks, routing protocols, malicious attacks, wireless networks simulation

Procedia PDF Downloads 320
4227 Identifying Enablers and Barriers of Healthcare Knowledge Transfer: A Systematic Review

Authors: Yousuf Nasser Al Khamisi

Abstract:

Purpose: This paper presents a Knowledge Transfer (KT) Framework in healthcare sectors by applying a systematic literature review process to the healthcare organizations domain to identify enablers and barriers of KT in Healthcare. Methods: The paper conducted a systematic literature search of peer-reviewed papers that described key elements of KT using four databases (Medline, Cinahl, Scopus, and Proquest) for a 10-year period (1/1/2008–16/10/2017). The results of the literature review were used to build a conceptual framework of KT in healthcare organizations. The author used a systematic review of the literature, as described by Barbara Kitchenham in Procedures for Performing Systematic Reviews. Findings: The paper highlighted the impacts of using Knowledge Management (KM) concept at a healthcare organization in controlling infectious diseases in hospitals, improving family medicine performance and enhancing quality improvement practices. Moreover, it found that good-coding performance is analytically linked with a knowledge sharing network structure rich in brokerage and hierarchy rather than in density. The unavailability or ignored of the latest evidence on more cost-effective or more efficient delivery approaches leads to increase the healthcare costs and may lead to unintended results. Originality: Search procedure produced 12,093 results, of which 3523 were general articles about KM and KT. The titles and abstracts of these articles had been screened to segregate what is related and what is not. 94 articles identified by the researchers for full-text assessment. The total number of eligible articles after removing un-related articles was 22 articles.

Keywords: healthcare organisation, knowledge management, knowledge transfer, KT framework

Procedia PDF Downloads 138
4226 Effectiveness of Electronic Learning for Continuing Interprofessional Education on Behavior Change of Healthcare Professionals: A Scoping Review

Authors: Kailin K. Zhang, Anne W. Thompson

Abstract:

Electronic learning for continuing professional education (CPE) and interprofessional education (IPE) in healthcare have been shown to improve learners’ satisfaction, attitudes, and performance. Yet, their impact on behavior change in healthcare professionals through continuing interprofessional education (CIPE) is less known. A scoping review of 32 articles from 2010 to 2020 was conducted using the Arksey and O’Malley framework across all healthcare settings. It focused on evaluating the effectiveness of CIPE on behavior change of healthcare professionals, as well as identifying course features of electronic CIPE programs facilitating behavior change. Eight different types of electronic learning methods, including online programs, tele-education, and social media, were identified as interventions. More than 35,542 healthcare professionals participated in the interventions. Electronic learning for CIPE led to positive behavior outcomes in 30 out of 32 studies, especially through a change in patient care practices. The most successful programs provided interactive and authentic learning experiences tailored to learners’ needs while promoting the direct application of what was learned in their clinical settings. Future research should include monitoring of sustained behavior changes and their resultant patient outcomes.

Keywords: behavior change, continuing interprofessional education, distance learning, electronic learning

Procedia PDF Downloads 144
4225 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities

Authors: Paul Barasa Wanyama, Tom Wanyama

Abstract:

Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.

Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities

Procedia PDF Downloads 16
4224 A3 Strategy Deployment: A Case Study Applied to a City Government Department for Healthcare in Brazil

Authors: Samuel Bonato, Cineia Santos, Roberta Leite, Carla Ten Caten

Abstract:

This paper aims to apply the A3 strategy deployment in a local department for healthcare. As a literature review, it was evaluated articles related to the period 2009 - 2018, considering the key-words A3, healthcare, public services and strategy deployment. The methodology used was action research, involving all the actors inside the secretary, beginning with the top management and deploying it through meetings and evaluation conferences with the participation of all secretary coordination. As main results, it is possible to highlight the development of 8 A3, one as the "mother A3" and 7 as "son A3", each one related to each coordination. In each A3, past results, new goals, new projects to achieve these goals and control deadlines were defined and implemented to a management strategy. In addition to this result, this paper is planning to present the use of this A3 during 6 months in 2019.

Keywords: A3 Strategy, strategy deployment, healthcare, Public services

Procedia PDF Downloads 149
4223 High-Value Health System for All: Technologies for Promoting Health Education and Awareness

Authors: M. P. Sebastian

Abstract:

Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.

Keywords: big data, education, healthcare, information communication technologies (ICT), patients, technologies

Procedia PDF Downloads 210
4222 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems

Authors: Aydin M. Torkabadi, Ehsan Pourjavad

Abstract:

A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.

Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM

Procedia PDF Downloads 162
4221 The Role of Leadership in Enhancing Health Information Systems to Improve Patient Outcomes in China

Authors: Nisar Ahmad, Xuyi, Ali Akbar

Abstract:

As healthcare systems worldwide strive for improvement, the integration of advanced health information systems (HIS) has emerged as a pivotal strategy. This study aims to investigate the critical role of leadership in the implementation and enhancement of HIS in Chinese hospitals and how such leadership can drive improvements in patient outcomes and overall healthcare satisfaction. We propose a comprehensive study to be conducted across various hospitals in China, targeting healthcare professionals as the primary population. The research will leverage established theories of transformational leadership and technology acceptance to underpin the analysis. In our approach, data will be meticulously gathered through surveys and interviews, focusing on the experiences and perceptions of healthcare professionals regarding HIS implementation and its impact on patient care. The study will utilize SPSS and SmartPLS software for robust data analysis, ensuring precise and comprehensive insights into the correlation between leadership effectiveness and HIS success. We hypothesize that strong, visionary leadership is essential for the successful adoption and optimization of HIS, leading to enhanced patient outcomes and increased satisfaction with healthcare services. By applying advanced statistical methods, we aim to identify key leadership traits and practices that significantly contribute to these improvements. Our research will provide actionable insights for policymakers and healthcare administrators in China, offering evidence-based recommendations to foster leadership that champions HIS and drives continuous improvement in healthcare delivery. This study will contribute to the global discourse on health information systems, emphasizing the future role of leadership in transforming healthcare environments and outcomes.

Keywords: health information systems, leadership, patient outcomes, healthcare satisfaction

Procedia PDF Downloads 35
4220 Interbank Networks and the Benefits of Using Multilayer Structures

Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti

Abstract:

Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.

Keywords: complexity, interbank networks, multilayer networks, network analysis

Procedia PDF Downloads 282
4219 Patient Safety of Eating Ready-Made Meals at Government Hospitals

Authors: Hala Kama Ahmed Rashwan

Abstract:

Ensuring the patient safety especially at intensive care units and those exposed to hospital tools and equipment is one of the most important challenges facing healthcare today. Outbreak of food poisoning as a result of food-borne pathogens has been reported in many hospitals and care homes all over the world due to hospital meals. Patient safety of eating hospital meals is a fundamental principle of healthcare; it is new healthcare disciplines that assure the food raw materials, food storage, meals processing, and control of kitchen errors that often lead to adverse healthcare events. The aim of this article is to promote any hospital in attaining the hygienic practices and better quality system during processing of the ready-to- eat meals for intensive care units patients according to the WHO safety guidelines.

Keywords: hospitals, meals, safety, intensive care

Procedia PDF Downloads 510
4218 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman

Authors: Ahmed Al Khamisi

Abstract:

The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.

Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning

Procedia PDF Downloads 147
4217 An Approach for Multilayered Ecological Networks

Authors: N. F. F. Ebecken, G. C. Pereira

Abstract:

Although networks provide a powerful approach to the study of a wide variety of ecological systems, their formulation usually does not include various types of interactions, interactions that vary in space and time, and interconnected systems such as networks. The emerging field of 'multilayer networks' provides a natural framework for extending ecological systems analysis to include these multiple layers of complexity as it specifically allows for differentiation and modeling of intralayer and interlayer connectivity. The structure provides a set of concepts and tools that can be adapted and applied to the ecology, facilitating research in high dimensionality, heterogeneous systems in nature. Here, ecological multilayer networks are formally defined based on a review of prior and related approaches, illustrates their application and potential with existing data analyzes, and discusses limitations, challenges, and future applications. The integration of multilayer network theory into ecology offers a largely untapped potential to further address ecological complexity, to finally provide new theoretical and empirical insights into the architecture and dynamics of ecological systems.

Keywords: ecological networks, multilayered networks, sea ecology, Brazilian Coastal Area

Procedia PDF Downloads 155
4216 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects

Authors: Diego De Almeida Pereira, Diana Borchenko

Abstract:

Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.

Keywords: environmental psychology, architecture, neural networks, human and social well-being

Procedia PDF Downloads 495