Search results for: generic algorithm
3792 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito
Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar
Abstract:
The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes
Procedia PDF Downloads 2393791 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm
Procedia PDF Downloads 3733790 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 2343789 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5433788 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6243787 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping
Authors: Xiuqin Ma, Hongwu Qin
Abstract:
A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping
Procedia PDF Downloads 5083786 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems
Authors: Elham Kazemi
Abstract:
Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms
Procedia PDF Downloads 5153785 A Generic Metamodel for Dependability Analysis
Authors: Moomen Chaari, Wolfgang Ecker, Thomas Kruse, Bogdan-Andrei Tabacaru
Abstract:
In our daily life, we frequently interact with complex systems which facilitate our mobility, enhance our access to information, and sometimes help us recover from illnesses or diseases. The reliance on these systems is motivated by the established evaluation and assessment procedures which are performed during the different phases of the design and manufacturing flow. Such procedures are aimed to qualify the system’s delivered services with respect to their availability, reliability, safety, and other properties generally referred to as dependability attributes. In this paper, we propose a metamodel based generic characterization of dependability concepts and describe an automation methodology to customize this characterization to different standards and contexts. When integrated in concrete design and verification environments, the proposed methodology promotes the reuse of already available dependability assessment tools and reduces the costs and the efforts required to create consistent and efficient artefacts for fault injection or error simulation.Keywords: dependability analysis, model-driven development, metamodeling, code generation
Procedia PDF Downloads 4853784 Quality of Life in People with Hearing Loss: A Study of Patients Referred to an Audiological Service
Authors: Peder O. Laugen Heggdal, Oyvind Nordvik, Jonas Brannstrom, Flemming Vassbotn, Anne Kari Aarstad, Hans Jorgen Aarstad
Abstract:
Background: Hearing loss (HL) affect people of all ages and stages in life. To author's best knowledge, if patients with an HL have reduced Generic Quality of life (QoL), has yet not been answered. Aim: The aim of the present study was to investigate the relationship between HL and generic and disease-specific Health Related Quality of Life (HRQoL) in adult patients (aged 18–78 years) with an HL, seeking Hearing Aid (HA). Material and Methods: 158 adult (aged 18-78 years) patients with HL, referred for HA fitting at Haukeland University Hospital in western Norway, participated in the study. Both first-time users, as well as patients referred for HA renewals, were included. First-time users had been pre-examined by an Ear Nose and Throat specialist. The questionnaires were answered before the actual HA fitting procedure. The pure-tone average (PTA; frequencies 0.5, 1, 2 and 4 kHz) was determined for each ear. The generic European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire general part and a shortened version of the Abbreviated Profile of Hearing Aid Benefit (APHAB) were answered. In addition, EORTC HRQoL answers from a general population and patients with former head and neck cancer served as comparison. Results: In general, no lowered HRQoL scores were determined among HL patients compared to the general population. Patients with unilateral HL to some extent showed lower HRQoL than those with bilateral HL (social function and fatigue). The APHAB scores correlated significantly with the EORTC HRQoL scores. By stepwise linear regression analysis, the APHAB scores were scored secondary to PTA (best ear), cognitive and physical function. Conclusion: HRQoL scores in HL patients, in general, seems to be at the population level, but the unilateral HL patients scored to some extent lower than the bilateral HI patients. APHAB and generic QoL scores levels are associated. Both HRQoL and APHAB scores are generated more complexly than anticipated.Keywords: quality of life, hearing loss, hearing impairment, distress, depression, anxiety, hearing aid
Procedia PDF Downloads 2923783 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves
Authors: Jui-Ching Chou
Abstract:
Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model
Procedia PDF Downloads 1703782 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types
Authors: Chaghoub Soraya, Zhang Xiaoyan
Abstract:
This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median
Procedia PDF Downloads 2013781 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3153780 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.Keywords: degree, initial cluster center, k-means, minimum spanning tree
Procedia PDF Downloads 4093779 Factors Affecting Attitude of Community Pharmacists Towards Locally Manufactured Pharmaceutical Products in Addisababa: A Cross-sectional Study
Authors: Gelila Tamyalew, Asres Abitie
Abstract:
Community Pharmacists (CPs) have a significant part in consumer choice in the rational use of LMPPs. The opinion of pharmacists regarding branded and generic medications can offer a perception of the potential obstacles that might have to be overcome to advance generic medicine utilization. Many factors affect CPs' attitudes negatively toward LMPPs. Therefore, the current study assessed factors that can affect CPs' attitudes toward LMPPs. In the regression analysis of variables, three variables were associated with CPs' attitudes toward LMPPs. These are; maximum educational status, professional status, and year of experience in community pharmacy practice. Moreover, lack of belief in LMPPs, substitution agreement with the prescriber, cost-effectiveness of LMPPs, and consumer preference/demand were the most influencing reasons for the selection of LMPPs. In conclusion, the attitude of CPs seems suboptimal that requires an intervention to optimize LMPP utilization.Keywords: locally manufactured pharmaceutical products, attitude, community pharmacist, Ethiopia
Procedia PDF Downloads 843778 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 4193777 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 4373776 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities
Authors: J. Kaabi, Y. Harrath
Abstract:
This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.Keywords: flow shop scheduling, genetic algorithm, maintenance, priority rules
Procedia PDF Downloads 4703775 Memetic Algorithm for Solving the One-To-One Shortest Path Problem
Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier
Abstract:
The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm
Procedia PDF Downloads 4643774 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data
Authors: Arman S. Kussainov, Altynbek K. Beisekov
Abstract:
This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm
Procedia PDF Downloads 4103773 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm
Procedia PDF Downloads 4303772 Upon One Smoothing Problem in Project Management
Authors: Dimitri Golenko-Ginzburg
Abstract:
A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate
Procedia PDF Downloads 3013771 Examining the Relations among Autobiographical Memory Recall Types, Quality of Descriptions, and Emotional Arousal in Psychotherapy for Depression
Authors: Jinny Hong, Jeanne C. Watson
Abstract:
Three types of autobiographical memory recall -specific, episodic, and generic- were examined in relation to the quality of descriptions and in-session levels of emotional arousal. Correlational analyses and general estimating equation were conducted to test the relationships between 1) quality of descriptions and type of memory, 2) type of memory and emotional arousal, and 3) quality of descriptions and emotional arousal. The data was transcripts drawn from an archival randomized-control study comparing cognitive-behavioral therapy and emotion-focused therapy in a 16-week treatment for depression. Autobiographical memory recall segments were identified and sorted into three categories: specific, episodic, and generic. Quality of descriptions of these segments was then operationalized and measured using the Referential Activity Scale, and each memory segment was rated on four dimensions: concreteness, specificity, clarity, and overall imagery. Clients’ level of emotional arousal for each recall was measured using the Client’s Expression Emotion Scale. Contrary to the predictions, generic memories are associated with higher emotional arousal ratings and descriptive language ratings compared to specific memories. However, a positive relationship emerged between the quality of descriptions and expressed emotional arousal, indicating that the quality of descriptions in which memories are described in sessions is more important than the type of memory recalled in predicting clients’ level of emotional arousal. The results from this study provide a clearer understanding of the role of memory recall types and use of language in activating emotional arousal in psychotherapy sessions in a depressed sample.Keywords: autobiographical memory recall, emotional arousal, psychotherapy for depression, quality of descriptions, referential activity
Procedia PDF Downloads 1603770 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 1353769 Key Competences in Economics and Business Field: The Employers’ Side of the Story
Authors: Bruno Škrinjarić
Abstract:
Rapid technological developments and increase in organizations’ interdependence on international scale are changing the traditional workplace paradigm. A key feature of knowledge based economy is that employers are looking for individuals that possess both specific academic skills and knowledge, and also capability to be proactive and respond to problems creatively and autonomously. The focus of this paper is workers with Economics and Business background and its goals are threefold: (1) to explore wide range of competences and identify which are the most important to employers; (2) to investigate the existence and magnitude of gap between required and possessed level of a certain competency; and (3) to inquire how this gap is connected with performance of a company. A study was conducted on a representative sample of Croatian enterprises during the spring of 2016. Results show that generic, rather than specific, competences are more important to employers and the gap between the relative importance of certain competence and its current representation in existing workforce is greater for generic competences than for specific. Finally, results do not support the hypothesis that this gap is correlated with firms’ performance.Keywords: competency gap, competency matching, key competences, firm performance
Procedia PDF Downloads 3313768 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles using Enhanced Collaborative Optimization
Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre
Abstract:
The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and a dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.Keywords: multidisciplinary, multilevel, morphing, enhanced collaborative optimization
Procedia PDF Downloads 9273767 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 2303766 Hardware for Genetic Algorithm
Authors: Fariborz Ahmadi, Reza Tati
Abstract:
Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones.Keywords: hardware, genetic algorithm, computer science, engineering
Procedia PDF Downloads 5053765 A Kruskal Based Heuxistic for the Application of Spanning Tree
Authors: Anjan Naidu
Abstract:
In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90
Procedia PDF Downloads 4413764 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 6023763 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm
Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang
Abstract:
In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm
Procedia PDF Downloads 149