Search results for: commercialization uncertainties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 583

Search results for: commercialization uncertainties

493 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 430
492 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty

Authors: Reza Alikhani

Abstract:

This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.

Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience

Procedia PDF Downloads 69
491 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 240
490 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach

Authors: Young Yoon, Jinsoo Kim

Abstract:

The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: information and communication technologies, R&D, real option, unconventional gas

Procedia PDF Downloads 229
489 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 462
488 On the Way to the European Research Area: Programmes of the European Union as Factor of the Innovation Development the Scientific Organization in Ukraine

Authors: Yuri Nikitin, Veronika Rukas

Abstract:

Within the framework of the FP7 project "START" the cooperation with European research centres has had a positive impact on raising the level of innovation researches and the introduction of innovations Institute for Super hard Materials of the National Academy of Sciences (ISM NAS) of Ukraine in the economy of Europe and Ukraine, which in turn permits to speeds up the way for Ukrainian science to the European research area through the creation in Ukraine the scientific organizations of innovative type.

Keywords: programs of the EU, innovative scientific results, innovation competence of the staff, commercialization in business of industry of the Europe and Ukraine

Procedia PDF Downloads 326
487 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process

Authors: Johannes Gantner, Michael Held, Matthias Fischer

Abstract:

The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.

Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation

Procedia PDF Downloads 286
486 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 166
485 Fast Robust Switching Control Scheme for PWR-Type Nuclear Power Plants

Authors: Piyush V. Surjagade, Jiamei Deng, Paul Doney, S. R. Shimjith, A. John Arul

Abstract:

In sophisticated and complex systems such as nuclear power plants, maintaining the system's stability in the presence of uncertainties and disturbances and obtaining a fast dynamic response are the most challenging problems. Thus, to ensure the satisfactory and safe operation of nuclear power plants, this work proposes a new fast, robust optimal switching control strategy for pressurized water reactor-type nuclear power plants. The proposed control strategy guarantees a substantial degree of robustness, fast dynamic response over the entire operational envelope, and optimal performance during the nominal operation of the plant. To improve the robustness, obtain a fast dynamic response, and make the system optimal, a bank of controllers is designed. Various controllers, like a baseline proportional-integral-derivative controller, an optimal linear quadratic Gaussian controller, and a robust adaptive L1 controller, are designed to perform distinct tasks in a specific situation. At any instant of time, the most suitable controller from the bank of controllers is selected using the switching logic unit that designates the controller by monitoring the health of the nuclear power plant or transients. The proposed switching control strategy optimizes the overall performance and increases operational safety and efficiency. Simulation studies have been performed considering various uncertainties and disturbances that demonstrate the applicability and effectiveness of the proposed switching control strategy over some conventional control techniques.

Keywords: switching control, robust control, optimal control, nuclear power control

Procedia PDF Downloads 134
484 Manufacturing of Vacuum Glazing with Metal Edge Seal

Authors: Won Kyeong Kang, Tae-Ho Song

Abstract:

Vacuum glazing (VG) is a super insulator, which is able to greatly improve the energy efficiency of building. However, a significant amount of heat loss occurs through the welded edge of conventional VG. The joining method should be improved for further application and commercialization. For this purpose VG with metal edge seal is conceived. In this paper, the feasibility of joining stainless steel and soda lime glass using glass solder is assessed numerically and experimentally. In the case of very thin stainless steel, partial joining with glass is identified, which need further improvement for practical application.

Keywords: VG, metal edge seal, vacuum glazing, manufacturing,

Procedia PDF Downloads 605
483 System of System Decisions Framework for Cross-Border Railway Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki, Anastasia Kalamakidou

Abstract:

Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in the decision process and –many times- the investment and business risks are high. Decision makers and stakeholders need to define the framework and the outputs of the decision process taking into account the project characteristics, the business uncertainties, and the different expectations. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross-border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analysed. Adopting the on system of system methodological approach, the decision making the framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey, and Bulgaria.

Keywords: system of system decision making, managing decisions for transport projects, decision support framework, defining decision process

Procedia PDF Downloads 308
482 Design of Robust and Intelligent Controller for Active Removal of Space Debris

Authors: Shabadini Sampath, Jinglang Feng

Abstract:

With huge kinetic energy, space debris poses a major threat to astronauts’ space activities and spacecraft in orbit if a collision happens. The active removal of space debris is required in order to avoid frequent collisions that would occur. In addition, the amount of space debris will increase uncontrollably, posing a threat to the safety of the entire space system. But the safe and reliable removal of large-scale space debris has been a huge challenge to date. While capturing and deorbiting space debris, the space manipulator has to achieve high control precision. However, due to uncertainties and unknown disturbances, there is difficulty in coordinating the control of the space manipulator. To address this challenge, this paper focuses on developing a robust and intelligent control algorithm that controls joint movement and restricts it on the sliding manifold by reducing uncertainties. A neural network adaptive sliding mode controller (NNASMC) is applied with the objective of finding the control law such that the joint motions of the space manipulator follow the given trajectory. A computed torque control (CTC) is an effective motion control strategy that is used in this paper for computing space manipulator arm torque to generate the required motion. Based on the Lyapunov stability theorem, the proposed intelligent controller NNASMC and CTC guarantees the robustness and global asymptotic stability of the closed-loop control system. Finally, the controllers used in the paper are modeled and simulated using MATLAB Simulink. The results are presented to prove the effectiveness of the proposed controller approach.

Keywords: GNC, active removal of space debris, AI controllers, MatLabSimulink

Procedia PDF Downloads 132
481 An Experimental Approach to the Influence of Tipping Points and Scientific Uncertainties in the Success of International Fisheries Management

Authors: Jules Selles

Abstract:

The Atlantic and Mediterranean bluefin tuna fishery have been considered as the archetype of an overfished and mismanaged fishery. This crisis has demonstrated the role of public awareness and the importance of the interactions between science and management about scientific uncertainties. This work aims at investigating the policy making process associated with a regional fisheries management organization. We propose a contextualized computer-based experimental approach, in order to explore the effects of key factors on the cooperation process in a complex straddling stock management setting. Namely, we analyze the effects of the introduction of a socio-economic tipping point and the uncertainty surrounding the estimation of the resource level. Our approach is based on a Gordon-Schaefer bio-economic model which explicitly represents the decision making process. Each participant plays the role of a stakeholder of ICCAT and represents a coalition of fishing nations involved in the fishery and decide unilaterally a harvest policy for the coming year. The context of the experiment induces the incentives for exploitation and collaboration to achieve common sustainable harvest plans at the Atlantic bluefin tuna stock scale. Our rigorous framework allows testing how stakeholders who plan the exploitation of a fish stock (a common pool resource) respond to two kinds of effects: i) the inclusion of a drastic shift in the management constraints (beyond a socio-economic tipping point) and ii) an increasing uncertainty in the scientific estimation of the resource level.

Keywords: economic experiment, fisheries management, game theory, policy making, Atlantic Bluefin tuna

Procedia PDF Downloads 253
480 Intellectual Capital as Resource Based Business Strategy

Authors: Vidya Nimkar Tayade

Abstract:

Introduction: Intellectual capital of an organization is a key factor to success. Many companies invest a huge amount in their Research and development activities. Any innovation is helpful not only to that particular company but also to many other companies, industry and mankind as a whole. Companies undertake innovative changes for increasing their capital profitability and indirectly increase in pay packages of their employees. The quality of human capital can also improve due to such positive changes. Employees become more skilled and experienced due to such innovations and inventions. For increasing intangible capital, the author has referred to a couple of books and referred case studies to come to a conclusion. Different charts and tables are also referred to by the author. Case studies are more important because they are proven and established techniques. They enable students to apply theoretical concepts in real-world situations. It gives solutions to an open-ended problem with multiple potential solutions. There are three different strategies for undertaking intellectual capital increase. They are: Research push strategy/ Technology pushed approach, Market pull strategy/ approach and Open innovation strategy/approach. Research push strategy, In this strategy, research is undertaken and innovation is achieved on its own. After invention inventor company protects such invention and finds buyers for such invention. In this way, the invention is pushed into the market. In this method, research and development are undertaken first and the outcome of this research is commercialized. Market pull strategy, In this strategy, commercial opportunities are identified first and our research is concentrated in that particular area. For solving a particular problem, research is undertaken. It becomes easier to commercialize this type of invention. Because what is the problem is identified first and in that direction, research and development activities are carried on. Open invention strategy, In this type of research, more than one company enters into an agreement of research. The benefits of the outcome of this research will be shared by both companies. Internal and external ideas and technologies are involved. These ideas are coordinated and then they are commercialized. Due to globalization, people from the outside company are also invited to undertake research and development activities. Remuneration of employees of both the companies can increase and the benefit of commercialization of such invention is also shared by both the companies. Conclusion: In modern days, not only can tangible assets be commercialized, but also intangible assets can also be commercialized. The benefits of such an invention can be shared by more than one company. Competition can become more meaningful. Pay packages of employees can improve. It Is a need for time to adopt such strategies to benefit employees, competitors, stakeholders.

Keywords: innovation, protection, management, commercialization

Procedia PDF Downloads 168
479 A Software Product Engineering Process for Commercial Success in Start-Up and Cases

Authors: Javed Ahsan

Abstract:

Software engineers strive for technical sophistication with a dream of finding commercial success in their start-up business. But they may find their much technically sophisticated software products failing in industry in competition with lesser sophisticated products. This is because of not maintaining a clear focus on complimenting and leading commercial success through technical sophistication. This can be achieved through a software engineering specific product development process suggested in this paper. This process is about evolving a software product through specific phases and iterations until commercial triumph falls on software engineer’s feet.

Keywords: software, product, engineering, commercialization, start-up, competitiveness, industry

Procedia PDF Downloads 356
478 The Emergence and Influence of Early European Opera: A Historical and Analytical Study

Authors: Yan Jiajun, Baroque Opera, Florentine Camerata

Abstract:

This paper explores the origins, development, and cultural impact of early European opera, particularly focusing on its inception in late 16th century Italy and its subsequent spread across Europe. Through an in-depth analysis of key operas and performers, this study demonstrates how opera served as both a reflection of and an influence on the social, political, and economic landscapes of early modern Europe. The discussion includes the role of public opera houses, the commercialization of the art form, and the significance of the prima donna, supported by references to relevant literature and historical documents.

Keywords: early European opera, baroque opera, Florentine camerata, prima donna, cultural impact

Procedia PDF Downloads 11
477 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate

Authors: Chia-Ling Li

Abstract:

The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.

Keywords: economic analysis, hydrogenation, non-phthalate, process simulation

Procedia PDF Downloads 277
476 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 139
475 Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes

Authors: Iris Vural Gursel, Andrea Ramirez

Abstract:

Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising.

Keywords: biorefinery, economic assessment, lignin conversion, process design

Procedia PDF Downloads 261
474 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 59
473 Making Beehives More 'Intelligent'- The Case of Capturing, Reducing, and Managing Bee Pest Infestation in Hives through Modification of Hive Entrance Holes and the Installation of Multiple In-Hive Bee Pest Traps

Authors: Prince Amartey

Abstract:

Bees are clever creatures, thus, capturing bees implies that the hives are intelligent in the sense that they have all of the required circumstances to attract and trap the bees. If the hive goes above and beyond to keep the bees in the hive and to keep the activities of in-hive pests to a minimal in order for the bees to develop to their maximum potential, the hive is becoming or is more 'intelligent'. Some bee pests, such as tiny beehive beetles, are endemic to Africa; however, the way we now extract honey by cutting off the combs and pressing for honey prevents the spread of these bees' insect enemies. However, when we explore entering the commercialization. When freshly collected combs are returned to the hives following the adoption of the frame and other systems, there is a need to consider putting in strategies to manage the accompanying pest concerns that arise with unprotected combs.The techniques for making hives more'intelligent' are thus more important presently, given that the African apicultural business does not wish to encourage the use of pesticides in the hives. This include changing the hive's entrance holes in order to improve the bees' own mechanism for defending the entry sites, as well as collecting pests by setting exterior and in-hive traps to prevent pest infiltration into hives by any means feasible. Material and Methods: The following five (5) mechanisms are proposed to make the hives more 'intelligent.' i. The usage of modified frames with five (5) beetle traps positioned horizontally on the vertical 'legs' to catch the beetle along the combs' surfaces-multiple bee ii. Baited bioelectric frame traps, which has both vertical sections of frame covered with a 3mm mesh that allows pest entry but not bees. The pest is attracted by strips of combs of honey, open brood, pollen on metal plates inserted horizontally on the vertical ‘legs’ of the frames. An electrical ‘mine’ system in place that electrocutes the pests as they step on the wires in the trap to enter the frame trap iii. The ten rounded hive entry holes are adapted as the bees are able to police the entrance to prevent entry of pest. The holes are arranged in two rows, with one on top of the other What Are the Main Contributions of Your Research?-Results Discussions and Conclusions The techniques implemented decrease pest ingress, while in-hive traps capture those that escape entry into the hives. Furthermore, the stand alteration traps larvae and stops their growth into adults. As beekeeping commercialization grows throughout Africa, these initiatives will minimize insect infestation in hives and necessarily enhance honey output.

Keywords: bee pests, modified frames, multiple beetle trap, Baited bioelectric frame traps

Procedia PDF Downloads 78
472 Time, Uncertainty, and Technological Innovation

Authors: Xavier Everaert

Abstract:

Ever since the publication of “The Problem of Social” cost, Coasean insights on externalities, transaction costs, and the reciprocal nature of harms, have been widely debated. What has been largely neglected however, is the role of technological innovation in the mitigation of negative externalities or transaction costs. Incorporating future uncertainty about negligence standards or expected restitution costs and the profit opportunities these uncertainties reveal to entrepreneurs, allow us to frame problems regarding social costs within the reality of rapid technological evolution.

Keywords: environmental law and economics, entrepreneurship, commons, pollution, wildlife

Procedia PDF Downloads 420
471 Search for New Design Elements in Time-Honoured Shops in Tainan — On Curriculum Practice about Culture Creative Industry

Authors: Ya-Ling Huang, Ming-Chun Tsai, Fan Hsu, Kai-Ru Hsieh

Abstract:

This paper mainly discusses the research and practice process of a laboratory curriculum by leading students to perform field investigation into time-honoured shops that have existed for more than 50 years in the downtown area of Tainan, Taiwan, and then search again for design elements and completing the design. The participants are juniors from the Department of Visual Communication Design, Kun Shan University. The duration of research and practice is two months. Operators of these shops are invited to jointly appraise the final achievements. 9 works out of 27 are chosen for final exhibition and commercialization.

Keywords: culture creative industry, visual communication design, curriculum experimental, visual arts

Procedia PDF Downloads 355
470 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles

Authors: Bo Yang, Christopher Monterola

Abstract:

Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.

Keywords: intersection control, autonomous vehicles, traffic modelling, intelligent transport system

Procedia PDF Downloads 455
469 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 99
468 Complex Analysis of Annual Plats Utilization for Particleboard Production

Authors: Petra Gajdačová

Abstract:

The presented research deals with a complex evaluation of after-harvest remnants utilization for particleboard production. Agricultural crops that are in the Czech Republic widely grown are in the scope of interest. Researches dealing with composites from agricultural rests solved mostly physical and mechanical properties of produced materials. For the commercialization of these results, however, one another step is essential. It is needed to evaluate the composites production from agricultural rests more comprehensive, take into account all aspects that affect their production, not only material characteristics of produced composites. In this study, descriptive, comparative and synthesis methods were used. Results of this research include a supply stability forecast, technical and technological differences of production of particleboards from agricultural rests and quantification of an economical potential of the agricultural rests.

Keywords: agricultural crops, annual plant, composite material, particleboard

Procedia PDF Downloads 196
467 The Significance of a Well-Defined Systematic Approach in Risk Management for Construction Projects within Oil Industry

Authors: Batool Ismaeel, Umair Farooq, Saad Mushtaq

Abstract:

Construction projects in the oil industry can be very complex, having unknown outcomes and uncertainties that cannot be easily predicted. Each project has its unique risks generated by a number of factors which, if not controlled, will impact the successful completion of the project mainly in terms of schedule, cost, quality, and safety. This paper highlights the historic risks associated with projects in the south and east region of Kuwait Oil Company (KOC) collated from the company’s lessons learned database. Starting from Contract Award through to handover of the project to the Asset owner, the gaps in project execution in terms of managing risk will be brought to discussion and where a well-defined systematic approach in project risk management reflecting many claims, change of scope, exceeding budget, delays in engineering phase as well as in the procurement and fabrication of long lead items should be adopted. This study focuses on a proposed feasible approach in risk management for engineering, procurement and construction (EPC) level projects including the various stakeholders involved in executing the works from International to local contractors and vendors in KOC. The proposed approach covers the areas categorized into organizational, design, procurement, construction, pre-commissioning, commissioning and project management in which the risks are identified and require management and mitigation. With the effective deployment and implementation of the proposed risk management system and the consideration of it as a vital key in achieving the project’s target, the outcomes will be more predictable in the future, and the risk triggers will be managed and controlled. The correct resources can be allocated on a timely basis for the company for avoiding any unpredictable outcomes during the execution of the project. It is recommended in this paper to apply this risk management approach as an integral part of project management and investigate further in the future, the effectiveness of this proposed system for newly awarded projects and compare the same with those projects of similar budget/complexity that have not applied this approach to risk management.

Keywords: construction, project completion, risk management, uncertainties

Procedia PDF Downloads 153
466 Risk Assessment on Construction Management with “Fuzzy Logy“

Authors: Mehrdad Abkenari, Orod Zarrinkafsh, Mohsen Ramezan Shirazi

Abstract:

Construction projects initiate in complicated dynamic environments and, due to the close relationships between project parameters and the unknown outer environment, they are faced with several uncertainties and risks. Success in time, cost and quality in large scale construction projects is uncertain in consequence of technological constraints, large number of stakeholders, too much time required, great capital requirements and poor definition of the extent and scope of the project. Projects that are faced with such environments and uncertainties can be well managed through utilization of the concept of risk management in project’s life cycle. Although the concept of risk is dependent on the opinion and idea of management, it suggests the risks of not achieving the project objectives as well. Furthermore, project’s risk analysis discusses the risks of development of inappropriate reactions. Since evaluation and prioritization of construction projects has been a difficult task, the network structure is considered to be an appropriate approach to analyze complex systems; therefore, we have used this structure for analyzing and modeling the issue. On the other hand, we face inadequacy of data in deterministic circumstances, and additionally the expert’s opinions are usually mathematically vague and are introduced in the form of linguistic variables instead of numerical expression. Owing to the fact that fuzzy logic is used for expressing the vagueness and uncertainty, formulation of expert’s opinion in the form of fuzzy numbers can be an appropriate approach. In other words, the evaluation and prioritization of construction projects on the basis of risk factors in real world is a complicated issue with lots of ambiguous qualitative characteristics. In this study, evaluated and prioritization the risk parameters and factors with fuzzy logy method by combination of three method DEMATEL (Decision Making Trial and Evaluation), ANP (Analytic Network Process) and TOPSIS (Technique for Order-Preference by Similarity Ideal Solution) on Construction Management.

Keywords: fuzzy logy, risk, prioritization, assessment

Procedia PDF Downloads 594
465 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong

Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong

Abstract:

Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.

Keywords: climate change, robust decision support, scenarios, water resources management

Procedia PDF Downloads 170
464 Controller Design Using GA for SMC Systems

Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan

Abstract:

This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.

Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector

Procedia PDF Downloads 363