Search results for: Stokes equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2159

Search results for: Stokes equation

2069 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media

Authors: Olayiwola Moruf Oyedunsi

Abstract:

This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.

Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation

Procedia PDF Downloads 323
2068 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces

Authors: Somnath Bhattacharyya

Abstract:

The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.

Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions

Procedia PDF Downloads 72
2067 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation

Procedia PDF Downloads 133
2066 Elvis Improved Method for Solving Simultaneous Equations in Two Variables with Some Applications

Authors: Elvis Adam Alhassan, Kaiyu Tian, Akos Konadu, Ernest Zamanah, Michael Jackson Adjabui, Ibrahim Justice Musah, Esther Agyeiwaa Owusu, Emmanuel K. A. Agyeman

Abstract:

In this paper, how to solve simultaneous equations using the Elvis improved method is shown. The Elvis improved method says; to make one variable in the first equation the subject; make the same variable in the second equation the subject; equate the results and simplify to obtain the value of the unknown variable; put the value of the variable found into one equation from the first or second steps and simplify for the remaining unknown variable. The difference between our Elvis improved method and the substitution method is that: with Elvis improved method, the same variable is made the subject in both equations, and the two resulting equations equated, unlike the substitution method where one variable is made the subject of only one equation and substituted into the other equation. After describing the Elvis improved method, findings from 100 secondary students and the views of 5 secondary tutors to demonstrate the effectiveness of the method are presented. The study's purpose is proved by hypothetical examples.

Keywords: simultaneous equations, substitution method, elimination method, graphical method, Elvis improved method

Procedia PDF Downloads 141
2065 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran

Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh

Abstract:

Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.

Keywords: evapotranspiration, hargreaves, equation, FAO-Penman method

Procedia PDF Downloads 395
2064 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method

Authors: A. Zerarka, W. Djoudi

Abstract:

The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.

Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions

Procedia PDF Downloads 664
2063 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow

Authors: Itissam Abuiziah

Abstract:

In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.

Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers

Procedia PDF Downloads 188
2062 On CR-Structure and F-Structure Satisfying Polynomial Equation

Authors: Manisha Kankarej

Abstract:

The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.

Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor

Procedia PDF Downloads 527
2061 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions

Authors: Matheus Fernando Pereira, Varese Salvador Timoteo

Abstract:

In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.

Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source

Procedia PDF Downloads 240
2060 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 421
2059 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia

Authors: Ted Silva

Abstract:

Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.

Keywords: pornography studies, queer cinema, French cinema, history

Procedia PDF Downloads 145
2058 Rare-Earth Ions Doped Lithium Niobate Crystals: Luminescence and Raman Spectroscopy

Authors: Ninel Kokanyan, Edvard Kokanyan, Anush Movsesyan, Marc D. Fontana

Abstract:

Lithium Niobate (LN) is one of the widely used ferroelectrics having a wide number of applications such as phase-conjugation, holographic storage, frequency doubling, SAW sensors. Furthermore, the possibility of doping with rare-earth ions leads to new laser applications. Ho and Tm dopants seem interesting due to laser emission obtained at around 2 µm. Raman spectroscopy is a powerful spectroscopic technique providing a possibility to obtain a number of information about physicochemical and also optical properties of a given material. Polarized Raman measurements were carried out on Ho and Tm doped LN crystals with excitation wavelengths of 532nm and 785nm. In obtained Raman anti-Stokes spectra, we detect expected modes according to Raman selection rules. In contrast, Raman Stokes spectra are significantly different compared to what is expected by selection rules. Additional forbidden lines are detected. These lines have quite high intensity and are well defined. Moreover, the intensity of mentioned additional lines increases with an increase of Ho or Tm concentrations in the crystal. These additional lines are attributed to emission lines reflecting the photoluminescence spectra of these crystals. It means that in our case we were able to detect, within a very good resolution, in the same Stokes spectrum, the transitions between the electronic states, and the vibrational states as well. The analysis of these data is reported as a function of Ho and Tm content, for different polarizations and wavelengths, of the incident laser beam. Results also highlight additional information about π and σ polarizations of crystals under study.

Keywords: lithium niobate, Raman spectroscopy, luminescence, rare-earth ions doped lithium niobate

Procedia PDF Downloads 221
2057 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 463
2056 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 137
2055 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser

Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li

Abstract:

Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.

Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering

Procedia PDF Downloads 221
2054 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: air pollutants, computational fluid dynamics, dispersion, simulation

Procedia PDF Downloads 457
2053 Timing Equation for Capturing Satellite Thermal Images

Authors: Toufic Abd El-Latif Sadek

Abstract:

The Asphalt object represents the asphalted areas, like roads. The best original data of thermal images occurred at a specific time during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects, using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found in this study a general timing equation for capturing satellite thermal images at different locations, depends on a fixed time the sunrise and sunset; Capture Time= Tcap =(TM*TSR) ±TS.

Keywords: asphalt, satellite, thermal images, timing equation

Procedia PDF Downloads 350
2052 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion

Procedia PDF Downloads 137
2051 On the Hirota Bilinearization of Fokas-Lenells Equation to Obtain Bright N-Soliton Solution

Authors: Sagardeep Talukdar, Gautam Kumar Saharia, Riki Dutta, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain bright soliton. We have obtained bright 1-soliton, 2-soliton solutions and propose the scheme for obtaining N-soliton solution. We have used an additional parameter which is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 123
2050 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation

Procedia PDF Downloads 119
2049 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 484
2048 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups

Procedia PDF Downloads 283
2047 Cubic Trigonometric B-Spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: collocation method, cubic trigonometric B-spline, finite difference, wave equation

Procedia PDF Downloads 543
2046 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids

Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho

Abstract:

In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.

Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model

Procedia PDF Downloads 117
2045 Differential Transform Method: Some Important Examples

Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen

Abstract:

In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.

Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions

Procedia PDF Downloads 539
2044 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation

Authors: Yanpei Zhen

Abstract:

The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.

Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables

Procedia PDF Downloads 183
2043 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models

Authors: Azadeh Jafari, Robert G. Owens

Abstract:

In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.

Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics

Procedia PDF Downloads 362
2042 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 105
2041 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 420
2040 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation

Authors: Sarun Phibanchon, Yuttakarn Rattanachai

Abstract:

The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.

Keywords: soliton, ion-acoustic waves, plasma, spectral method

Procedia PDF Downloads 412