Search results for: Process Mining
15991 Critical Review of Web Content Mining Extraction Mechanisms
Authors: Rabia Bashir, Sajjad Akbar
Abstract:
There is an inevitable demand of web mining due to rapid increase of huge information on the Internet, but the striking variety of web structures has made required content retrieval a difficult task. To counter this issue, Web Content Mining (WCM) emerges as a potential candidate which extracts and integrates suitable resources of data to users. In past few years, research has been done on several extraction techniques for WCM i.e. agent-based, template-based, assumption-based, statistic-based, wrapper-based and machine learning. However, it is still unclear that either these approaches are efficiently tackling the significant challenges of WCM or not. To answer this question, this paper identifies these challenges such as language independency, structure flexibility, performance, automation, dynamicity, redundancy handling, intelligence, relevant content retrieval, and privacy. Further, mapping of these challenges is done with existing extraction mechanisms which helps to adopt the most suitable WCM approach, given some conditions and characteristics at hand.Keywords: content mining challenges, web content mining, web content extraction approaches, web information retrieval
Procedia PDF Downloads 54915990 Static vs. Stream Mining Trajectories Similarity Measures
Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh
Abstract:
Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining
Procedia PDF Downloads 39615989 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization
Procedia PDF Downloads 12415988 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area
Authors: Bernard Kumi-Boateng, Kofi Bonsu
Abstract:
The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.Keywords: degradation, GIS, land, mining
Procedia PDF Downloads 35615987 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 85415986 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain
Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey
Abstract:
The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag, and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu, and Pb in the waters of the Rumblar reservoir reached values of 10, 20, and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.Keywords: environmental quality, hydrogeochemistry, metal mining, surface water
Procedia PDF Downloads 14415985 Annual Effective Dose Associated with Radon in Groundwater Samples from Mining Communities Within the Ife-Ilesha Schist Belt, Southwestern Nigeria.
Authors: Paulinah Oyindamola Fasanmi, Matthew Omoniyi Isinkaye
Abstract:
In this study, the activity concentration of ²²²Rn in groundwater samples collected from gold and kaolin mining communities within the Ife-Ilesha schist belt, southwestern Nigeria, with their corresponding annual effective doses have been determined using the Durridge RAD-7, radon-in-water detector. The mean concentration of ²²²Rn in all the groundwater samples was 13.83 Bql-¹. In borehole water, ²²²Rn had a mean value of 20.68 Bql-¹, while it had a mean value of 11.67 Bql-¹ in well water samples. The mean activity concentration of radon obtained from the gold mining communities ranged from 1.6 Bql-¹ from Igun town to 4.8 Bql-¹ from Ilesha town. A higher mean value of 41.8 Bql-¹ was, however, obtained from Ijero, which is the kaolin mining community. The mean annual effective dose due to ingestion and inhalation of radon from groundwater samples was obtained to be 35.35 μSvyr-¹ and 34.86 nSvyr-¹, respectively. The mean annual ingestion dose estimated for well water samples was 29.90 μSvyr-¹, while 52.85 μSvyr-¹ was obtained for borehole water samples. On the other hand, the mean annual inhalation dose for well water was 29.49 nSvyr-¹, while for borehole water, 52.13 nSvyr-¹ was obtained. The mean annual effective dose due to ingestion of radon in groundwater from the gold mining communities ranged from 4.10 μSvyr-¹ from Igun to 13.1 μSvyr-¹ from Ilesha, while a mean value of 106.7 μSvyr-¹ was obtained from Ijero kaolin mining community. For inhalation, the mean value varied from 4.0 nSvyr-¹ from Igun to 12.9 nSvyr-¹ from Ilesha, while 105.2 nSvyr-¹ was obtained from the kaolin mining community. The mean annual effective dose due to ingestion and inhalation is lower than the reference level of 100 μSvyr-¹ recommended by World Health Organization except for values obtained from Ijero kaolin mining community, which exceeded the reference levels. It has been concluded that as far as radon-related health risks are concerned, groundwater from gold mining communities is generally safe, while groundwater from kaolin mining communities needs mitigation and monitoring. It has been discovered that Kaolin mining impacts groundwater with ²²²Rn than gold mining. Also, the radon level in borehole water exceeds its level in well water.Keywords: 222Rn, Groundwater, Radioactivity, Annual Effective Dose, Mining.
Procedia PDF Downloads 7015984 Decision Support System in Air Pollution Using Data Mining
Authors: E. Fathallahi Aghdam, V. Hosseini
Abstract:
Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.Keywords: data mining, clustering, air pollution, crisp approach
Procedia PDF Downloads 42815983 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 50915982 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 41415981 Abandoned Mine Methane Mitigation in the United States
Authors: Jerome Blackman, Pamela Franklin, Volha Roshchanka
Abstract:
The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement.Keywords: abandoned mines, coal mine methane, coal mining, methane emissions, methane mitigation, recovery and use
Procedia PDF Downloads 7815980 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification
Procedia PDF Downloads 58315979 A Web Service-Based Framework for Mining E-Learning Data
Authors: Felermino D. M. A. Ali, S. C. Ng
Abstract:
E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka
Procedia PDF Downloads 23615978 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40215977 Small-Scale Mining Policies in Ghana: Miners' Knowledge, Attitudes and Practices
Authors: Franklin Nantui Mabe, Robert Osei
Abstract:
Activities and operations of artisanal small scale mining (ASM) have recently appealed to the attention of policymakers, researchers, and the general public in Ghana. This stems from the negative impacts of ASM operations on the environment and livelihoods of local inhabitants, as well as the disregard for available ASM mining policies. This study, therefore, investigates whether or not artisanal small-scale miners have enough knowledge of the mining policies and their implementations. The study adopted the Knowledge, Attitudes, and Practices (KAP) framework approach to design the research, collect and analyze primary data. The most aware ASM policy provision is the one that mandates the government to reserve demarcated ASM areas for Ghanaians, whilst the least aware provision is the one that admonishes the government to promote co-operative saving among ASM. The awareness index is lower than the attitude index towards the policy provisions. In terms of practices, miners continued to use bad practices with the associated negative impacts on the environment and rural livelihoods. It is therefore important for the government through mineral commission, district, municipal and metropolitan assemblies to intensify the education on the ASM policies. These could be done with the help of ASM associations. The current systems where a cluster of districts have a single Mineral Commission Office should be restructured to make sure that each mining district has an office.Keywords: mining policies, KAP, awareness, artisanal small-scale mining
Procedia PDF Downloads 18615976 Dietary Risk Assessment of Green Leafy Vegetables (GLV) Due to Heavy Metals from Selected Mining Areas
Authors: Simon Mensah Ofosu
Abstract:
Illicit surface mining activities pollutes agricultural lands and water bodies and results in accumulation of heavy metals in vegetables cultivated in such areas. Heavy metal (HM) accumulation in vegetables is a serious food safety issues due to the adverse effects of metal toxicities, hence the need to investigate the levels of these metals in cultivated vegetables in the eastern region. Cocoyam leaves, cabbage and cucumber were sampled from selected farms in mining areas (Atiwa District) and non -mining areas (Yilo Krobo and East Akim District) of the region for the study. Levels of Cadmium, Lead, Mercury and Arsenic were investigated in the vegetables with Atomic Absorption Spectrometer, and the results statistically analyzed with Microsoft Office Excel (2013) Spread Sheet and ANOVA. Cadmium (Cd) and arsenic (As) were the highest and least concentrated HM in the vegetables sampled, respectively. The mean concentrations of Cd and Pb in cabbage (0.564 mg/kg, 0.470 mg/kg), cucumber (0.389 mg/kg, 0.190 mg/kg), cocoyam leaves (0.410 mg/kg, 0.256 mg/kg) respectively from the mining areas exceeded the permissible limits set by Joint FAO/WHO. The mean concentrations of the metals in vegetables from the mining and non-mining areas varied significantly (P<0.05). The Target Hazard Quotient (THQ) was used to assess the health risk posed to the human population via vegetable consumption. The THQ values of cadmium, mercury, and lead in adults and children through vegetable consumption in the mining areas were greater than 1 (THQ >1). This indicates the potential health risk that the children and adults may be facing. The THQ values of adults and children in the non-mining areas were less than the safe limit of 1 (THQ<1), hence no significant health risk posed to the population from such areas.Keywords: food safety, risk assessment, illicit mining, public health, contaminated vegetables
Procedia PDF Downloads 9515975 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6715974 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study
Authors: Zeba Mahmood
Abstract:
The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining
Procedia PDF Downloads 53815973 On an Approach for Rule Generation in Association Rule Mining
Authors: B. Chandra
Abstract:
In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.Keywords: knowledge discovery, association rule mining, antecedent support, rule generation
Procedia PDF Downloads 32615972 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process
Authors: Shafiq Alam, Yen Ning Lee
Abstract:
Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability
Procedia PDF Downloads 37615971 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 43215970 Modelling of Powered Roof Supports Work
Authors: Marcin Michalak
Abstract:
Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.Keywords: machine modelling, underground mining, coal mining, structure
Procedia PDF Downloads 36815969 A Recommender System Fusing Collaborative Filtering and User’s Review Mining
Authors: Seulbi Choi, Hyunchul Ahn
Abstract:
Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.Keywords: Recommender system, Collaborative filtering, Text mining, Review mining
Procedia PDF Downloads 36115968 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey
Authors: D. I. George Amalarethinam, A. Emima
Abstract:
Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.Keywords: classification technique, data mining, EDM methods, prediction methods
Procedia PDF Downloads 11815967 The Women-In-Mining Discourse: A Study Combining Corpus Linguistics and Discourse Analysis
Authors: Ylva Fältholm, Cathrine Norberg
Abstract:
One of the major threats identified to successful future mining is that women do not find the industry attractive. Many attempts have been made, for example in Sweden and Australia, to create organizational structures and mining communities attractive to both genders. Despite such initiatives, many mining areas are developing into gender-segregated fly-in/fly out communities dominated by men with both social and economic consequences. One of the challenges facing many mining companies is thus to break traditional gender patterns and structures. To do this increased knowledge about gender in the context of mining is needed. Since language both constitutes and reproduces knowledge, increased knowledge can be gained through an exploration and description of the mining discourse from a gender perspective. The aim of this study is to explore what conceptual ideas are activated in connection to the physical/geographical mining area and to work within the mining industry. We use a combination of critical discourse analysis implying close reading of selected texts, such as policy documents, interview materials, applications and research and innovation agendas, and analyses of linguistic patterns found in large language corpora covering millions of words of contemporary language production. The quantitative corpus data serves as a point of departure for the qualitative analysis of the texts, that is, suggests what patterns to explore further. The study shows that despite technological and organizational development, one of the most persistent discourses about mining is the conception of dangerous and unfriendly areas infused with traditional notions of masculinity ideals and manual hard work. Although some of the texts analyzed highlight gender issues, and describe gender-equalizing initiatives, such as wage-mapping systems, female networks and recruitment efforts for women executives, and thereby render the discourse less straightforward, it is shown that these texts are not unambiguous examples of a counter-discourse. They rather illustrate that discourses are not stable but include opposing discourses, in dialogue with each other. For example, many texts highlight why and how women are important to mining, at the same time as they suggest that gender and diversity are all about women: why mining is a problem for them, how they should be, and what they should do to fit in. Drawing on a constitutive view of discourse, knowledge about such conflicting perceptions of women is a prerequisite for succeeding in attracting women to the mining industry and thereby contributing to the development of future mining.Keywords: discourse, corpus linguistics, gender, mining
Procedia PDF Downloads 26515966 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector
Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar
Abstract:
Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector
Procedia PDF Downloads 33115965 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects
Authors: Victor Radich, Tania Basso, Regina Moraes
Abstract:
Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring
Procedia PDF Downloads 8915964 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies
Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof
Abstract:
Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics
Procedia PDF Downloads 14915963 Identify Users Behavior from Mobile Web Access Logs Using Automated Log Analyzer
Authors: Bharat P. Modi, Jayesh M. Patel
Abstract:
Mobile Internet is acting as a major source of data. As the number of web pages continues to grow the Mobile web provides the data miners with just the right ingredients for extracting information. In order to cater to this growing need, a special term called Mobile Web mining was coined. Mobile Web mining makes use of data mining techniques and deciphers potentially useful information from web data. Web Usage mining deals with understanding the behavior of users by making use of Mobile Web Access Logs that are generated on the server while the user is accessing the website. A Web access log comprises of various entries like the name of the user, his IP address, a number of bytes transferred time-stamp etc. A variety of Log Analyzer tools exists which help in analyzing various things like users navigational pattern, the part of the website the users are mostly interested in etc. The present paper makes use of such log analyzer tool called Mobile Web Log Expert for ascertaining the behavior of users who access an astrology website. It also provides a comparative study between a few log analyzer tools available.Keywords: mobile web access logs, web usage mining, web server, log analyzer
Procedia PDF Downloads 36315962 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.Keywords: vegetation biodiversity, species composition, traditional coal mining, Caspian forest
Procedia PDF Downloads 183