Search results for: Gagne’s learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22208

Search results for: Gagne’s learning model

22118 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching

Authors: Angel Daniel Muñoz Guzmán

Abstract:

E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.

Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education

Procedia PDF Downloads 111
22117 Transformation to M-Learning at the Nursing Institute in the Armed Force Hospital Alhada, in Saudi Arabia Based on Activity Theory

Authors: Rahimah Abdulrahman, A. Eardle, Wilfred Alan, Abdel Hamid Soliman

Abstract:

With the rapid development in technology, and advances in learning technologies, m-learning has begun to occupy a great part of our lives. The pace of the life getting together with the need for learning started mobile learning (m-learning) concept. In 2008, Saudi Arabia requested a national plan for the adoption of information technology (IT) across the country. Part of the recommendations of this plan concerns the implementation of mobile learning (m-learning) as well as their prospective applications to higher education within the Kingdom of Saudi Arabia. The overall aim of the research is to explore the main issues that impact the deployment of m-learning in nursing institutes in Saudi Arabia, at the Armed Force Hospitals (AFH), Alhada. This is in order to be able to develop a generic model to enable and assist the educational policy makers and implementers of m-learning, to comprehend and treat those issues effectively. Specifically, the research will explore the concept of m-learning; identify and analyse the main organisational; technological and cultural issue, that relate to the adoption of m-learning; develop a model of m-learning; investigate the perception of the students of the Nursing Institutes to the use of m-learning technologies for their nursing diploma programmes based on their experiences; conduct a validation of the m-learning model with the use of the nursing Institute of the AFH, Alhada in Saudi Arabia, and evaluate the research project as a learning experience and as a contribution to the body of knowledge. Activity Theory (AT) will be adopted for the study due to the fact that it provides a conceptual framework that engenders an understanding of the structure, development and the context of computer-supported activities. The study will be adopt a set of data collection methods which engage nursing students in a quantitative survey, while nurse teachers are engaged through in depth qualitative studies to get first-hand information about the organisational, technological and cultural issues that impact on the deployment of m-learning. The original contribution will be a model for developing m-learning material for classroom-based learning in the nursing institute that can have a general application.

Keywords: activity theory (at), mobile learning (m-learning), nursing institute, Saudi Arabia (sa)

Procedia PDF Downloads 354
22116 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 115
22115 Serious Game for Learning: A Model for Efficient Game Development

Authors: Zahara Abdulhussan Al-Awadai

Abstract:

In recent years, serious games have started to gain an increasing interest as a tool to support learning across different educational and training fields. It began to serve as a powerful educational tool for improving learning outcomes. In this research, we discuss the potential of virtual experiences and games research outside of the games industry and explore the multifaceted impact of serious games and related technologies on various aspects of our lives. We highlight the usage of serious games as a tool to improve education and other applications with a purpose beyond the entertainment industry. One of the main contributions of this research is proposing a model that facilitates the design and development of serious games in a flexible and easy-to-use way. This is achieved by exploring different requirements to develop a model that describes a serious game structure with a focus on both aspects of serious games (educational and entertainment aspects).

Keywords: game development, requirements, serious games, serious game model

Procedia PDF Downloads 60
22114 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 312
22113 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study

Authors: Chui Ka Shing

Abstract:

This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.

Keywords: bar model method, curriculum development, mathematics education, problem solving

Procedia PDF Downloads 221
22112 Development of an Instructional Model for Health Education Based On Social Cognitive Theory and Strategic Life Planning to Enhance Self-Regulation and Learning Achievement of Lower Secondary School Students

Authors: Adisorn Bansong, Walai Isarankura Na Ayudhaya, Aumporn Makanong

Abstract:

A Development of an Instructional Model for Health Education was the aim to develop and study the effectiveness of an instructional model for health education to enhance self-regulation and learning achievement of lower secondary school students. It was the Quasi-Experimental Designs, used a Single-group Interrupted Time-series Designs, conducted by 2 phases: 1. To develop an instructional model based on Social Cognitive Theory and Strategic Life Planning. 2. To trial and evaluate effectiveness of an instructional model. The results as the following: i. An Instructional Model for Health Education consists of five main components: a) Attention b) Forethought c) Tactic Planning d) Execution and e) Reflection. ii. After an Instructional Model for Health Education has used for a semester trial, found the 4.07 percent of sample’s Self-Regulation higher and learning achievement on post-test were significantly higher than pre-test at .05 levels (p = .033, .000).

Keywords: social cognitive theory, strategic life planning, self-regulation, learning achievement

Procedia PDF Downloads 467
22111 Evaluating Key Attributes of Effective Digital Games in Tertiary Education

Authors: Roopali Kulkarni, Yuliya Khrypko

Abstract:

A major problem in educational digital game design is that game developers are often focused on maintaining the fun and playability of an educational game, whereas educators are more concerned with the learning aspect of the game rather than its entertaining characteristics. There is a clear need to understand what key aspects of digital learning games make them an effective learning medium in tertiary education. Through a systematic literature review and content analysis, this paper identifies, evaluates, and summarizes twenty-three key attributes of digital games used in tertiary education and presents a summary digital game-based learning (DGBL) model for designing and evaluating an educational digital game of any genre that promotes effective learning in tertiary education. The proposed solution overcomes limitations of previously designed models for digital game evaluation, such as a small number of game attributes considered or applicability to a specific genre of digital games. The proposed DGBL model can be used to assist game designers and educators with creating effective and engaging educational digital games for the tertiary education curriculum.

Keywords: DGBL model, digital games, educational games, game-based learning, tertiary education

Procedia PDF Downloads 286
22110 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 173
22109 The Effects of Learning Engagement on Interpreting Performance among English Major Students

Authors: Jianhua Wang, Ying Zhou, Xi Zhang

Abstract:

To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.

Keywords: learning engagement, interpreting performance, interpreter training, English major students

Procedia PDF Downloads 207
22108 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 185
22107 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
22106 Developing a Model of Teaching Writing Based On Reading Approach through Reflection Strategy for EFL Students of STKIP YPUP

Authors: Eny Syatriana, Ardiansyah

Abstract:

The purpose of recent study was to develop a learning model on writing, based on the reading texts which will be read by the students using reflection strategy. The strategy would allow the students to read the text and then they would write back the main idea and to develop the text by using their own sentences. So, the writing practice was begun by reading an interesting text, then the students would develop the text which has been read into their writing. The problem questions are (1) what kind of learning model that can develop the students writing ability? (2) what is the achievement of the students of STKIP YPUP through reflection strategy? (3) is the using of the strategy effective to develop students competence In writing? (4) in what level are the students interest toward the using of a strategy In writing subject? This development research consisted of some steps, they are (1) need analysis (2) model design (3) implementation (4) model evaluation. The need analysis was applied through discussion among the writing lecturers to create a learning model for writing subject. To see the effectiveness of the model, an experiment would be delivered for one class. The instrument and learning material would be validated by the experts. In every steps of material development, there was a learning process, where would be validated by an expert. The research used development design. These Principles and procedures or research design and development .This study, researcher would do need analysis, creating prototype, content validation, and limited empiric experiment to the sample. In each steps, there should be an assessment and revision to the drafts before continue to the next steps. The second year, the prototype would be tested empirically to four classes in STKIP YPUP for English department. Implementing the test greatly was done through the action research and followed by evaluation and validation from the experts.

Keywords: learning model, reflection, strategy, reading, writing, development

Procedia PDF Downloads 365
22105 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning

Procedia PDF Downloads 355
22104 Concept of the Active Flipped Learning in Engineering Mechanics

Authors: Lin Li, Farshad Amini

Abstract:

The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamics

Keywords: active learning, engineering mechanics, flipped classroom, performance

Procedia PDF Downloads 294
22103 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 97
22102 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure

Procedia PDF Downloads 191
22101 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 174
22100 Analysis of Structural Modeling on Digital English Learning Strategy Use

Authors: Gyoomi Kim, Jiyoung Bae

Abstract:

The purpose of this study was to propose a framework that verifies the structural relationships among students’ use of digital English learning strategy (DELS), affective domains, and their individual variables. The study developed a hypothetical model based on previous studies on language learning strategy use as well as digital language learning. The participants were 720 Korean high school students and 430 university students. The instrument was a self-response questionnaire that contained 70 question items based on Oxford’s SILL (Strategy Inventory for Language Learning) as well as the previous studies on language learning strategies in digital learning environment in order to measure DELS and affective domains. The collected data were analyzed through structural equation modeling (SEM). This study used quantitative data analysis procedures: Explanatory factor analysis (EFA) and confirmatory factor analysis (CFA). Firstly, the EFA was conducted in order to verify the hypothetical model; the factor analysis was conducted preferentially to identify the underlying relationships between measured variables of DELS and the affective domain in the EFA process. The hypothetical model was established with six indicators of learning strategies (memory, cognitive, compensation, metacognitive, affective, and social strategies) under the latent variable of the use of DELS. In addition, the model included four indicators (self-confidence, interests, self-regulation, and attitude toward digital learning) under the latent variable of learners’ affective domain. Secondly, the CFA was used to determine the suitability of data and research models, so all data from the present study was used to assess model fits. Lastly, the model also included individual learner factors as covariates and five constructs selected were learners’ gender, the level of English proficiency, the duration of English learning, the period of using digital devices, and previous experience of digital English learning. The results verified from SEM analysis proposed a theoretical model that showed the structural relationships between Korean students’ use of DELS and their affective domains. Therefore, the results of this study help ESL/EFL teachers understand how learners use and develop appropriate learning strategies in digital learning contexts. The pedagogical implication and suggestions for the further study will be also presented.

Keywords: Digital English Learning Strategy, DELS, individual variables, learners' affective domains, Structural Equation Modeling, SEM

Procedia PDF Downloads 125
22099 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education

Authors: Lihong Wu, Raymond Young

Abstract:

The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.

Keywords: knowledge, surface learning, deep learning, education

Procedia PDF Downloads 501
22098 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning

Procedia PDF Downloads 95
22097 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
22096 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 65
22095 The Developmental Model of Teaching and Learning Clinical Practicum at Postpartum Ward for Nursing Students by Using VARK Learning Styles

Authors: Wanwadee Neamsakul

Abstract:

VARK learning style is an effective method of learning that could enhance all skills of the students like visual (V), auditory (A), read/write (R), and kinesthetic (K). This learning style benefits the students in terms of professional competencies, critical thinking and lifelong learning which are the desirable characteristics of the nursing students. This study aimed to develop a model of teaching and learning clinical practicum at postpartum ward for nursing students by using VARK learning styles, and evaluate the nursing students’ opinions about the developmental model. A methodology used for this study was research and development (R&D). The model was developed by focus group discussion with five obstetric nursing instructors who have experiences teaching Maternal Newborn and Midwifery I subject. The activities related to practices in the postpartum (PP) ward including all skills of VARK were assigned into the matrix table. The researcher asked the experts to supervise the model and adjusted the model following the supervision. Subsequently, it was brought to be tried out with the nursing students who practiced on the PP ward. Thirty third year nursing students from one of the northern Nursing Colleges, Academic year 2015 were purposive sampling. The opinions about the satisfaction of the model were collected using a questionnaire which was tested for its validity and reliability. Data were analyzed using descriptive statistics. The developed model composed of 27 activities. Seven activities were developed as enhancement of visual skills for the nursing students (25.93%), five activities as auditory skills (18.52%), six activities as read and write skills (22.22%), and nine activities as kinesthetic skills (33.33%). Overall opinions about the model were reported at the highest level of average satisfaction (mean=4.63, S.D=0.45). In the aspects of visual skill (mean=4.80, S.D=0.45) was reported at the highest level of average satisfaction followed by auditory skill (mean=4.62, S.D=0.43), read and write skill (mean=4.57, S.D=0.46), and kinesthetic skill (mean=4.53, S.D=0.45) which were reported at the highest level of average satisfaction, respectively. The nursing students reported that the model could help them employ all of their skills during practicing and taking care of the postpartum women and newborn babies. They could establish self-confidence while providing care and felt proud of themselves by the benefits of the model. It can be said that using VARK learning style to develop the model could enhance both nursing students’ competencies and positive attitude towards the nursing profession. Consequently, they could provide quality care for postpartum women and newborn babies effectively in the long run.

Keywords: model, nursing students, postpartum ward, teaching and learning clinical practicum

Procedia PDF Downloads 151
22094 Intelligent Process and Model Applied for E-Learning Systems

Authors: Mafawez Alharbi, Mahdi Jemmali

Abstract:

E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.

Keywords: artificial intelligence, architecture, e-learning, software engineering, processing

Procedia PDF Downloads 192
22093 Overview on Effectiveness of Learning Contract in Architecture Design Studios

Authors: Badiossadat Hassanpour, Reza Sirjani, Nangkuala Utaberta

Abstract:

The avant-garde educational systems are striving to find a life long learning methods. Different fields and majors have test variety of proposed models, and found their difficulties and strengths. Architecture as a critical stage of education due to its characteristics which are learning by doing and critique based education and evaluation is out of this study procedure. Learning contracts is a new alternative form of evaluation of students’ achievements, while it acts as agreement about learning goals. Obtained results from studies in different fields which confirm its positive impact on students' learning in those fields and positively affected students' motivation and confidence in meeting their own learning needs, prompted us to implement this model in architecture design studio. In this implemented contract to the studio, students were asked to use the existing possibility of contract to have self assessment and examine their professional development to identify whether they are deficient or they would like to develop more expertise. The evidences of this research as well indicate that students feel positive about the learning contract and see it accommodating their individual learning needs.

Keywords: contract (LC), architecture design studio, education, student-centered learning

Procedia PDF Downloads 440
22092 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 120
22091 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 63
22090 Blended Learning through Google Classroom

Authors: Lee Bih Ni

Abstract:

This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.

Keywords: blended learning, learning app, google classroom, schools

Procedia PDF Downloads 148
22089 Use of Technology Based Intervention for Continuous Professional Development of Teachers in Pakistan

Authors: Rabia Aslam

Abstract:

Overwhelming evidence from all around the world suggests that high-quality teacher professional development facilitates the improvement of teaching practices which in turn could improve student learning outcomes. The new Continuous Professional Development (CPD) model for primary school teachers in Punjab uses a blended approach in which pedagogical content knowledge is delivered through technology (high-quality instructional videos and lesson plans delivered to school tablets or mobile phones) with face-to-face support by Assistant Education Officers (AEOs). The model also develops Communities of Practice operationalized through formal meetings led by the AEOs and informal interactions through social media groups to provide opportunities for teachers to engage with each other and share their ideas, reflect on learning, and come up with solutions to issues they experience. Using Kirkpatrick’s 4 levels of the learning evaluation model, this paper investigates how school tablets and teacher mobile phones may act as transformational cultural tools to potentially expand perceptions and access to teaching and learning resources and explore some of the affordances of social media (Facebook, WhatsApp groups) in learning in an informal context. The results will be used to inform policy-level decisions on what shape could CPD of all teachers take in the context of a developing country like Pakistan.

Keywords: CPD, teaching & learning, blended learning, learning technologies

Procedia PDF Downloads 86